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Oscillations of rapidly rotating superfluid stars
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ABSTRACT
Using time evolutions of the relevant linearized equations, we study non-axisymmetric oscilla-
tions of rapidly rotating and superfluid neutron stars. We consider perturbations of Newtonian
axisymmetric background configurations and account for the presence of superfluid compo-
nents via the standard two-fluid model. Within the Cowling approximation, we are able to
carry out evolutions for uniformly rotating stars up to the mass-shedding limit. This leads to
the first detailed analysis of superfluid neutron star oscillations in the fast rotation regime,
where the star is significantly deformed by the centrifugal force. For simplicity, we focus
on background models where the two fluids (superfluid neutrons and protons) corotate, are
in β-equilibrium and co-exist throughout the volume of the star. We construct sequences of
rotating stars for two analytical model equations of state. These models represent relatively
simple generalizations of single fluid, polytropic stars. We study the effects of entrainment,
rotation and symmetry energy on non-radial oscillations of these models. Our results show
that entrainment and symmetry energy can have a significant effect on the rotational splitting
of non-axisymmetric modes. In particular, the symmetry energy modifies the inertial mode
frequencies considerably in the regime of fast rotation.
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1 IN T RO D U C T I O N

According to the standard paradigm, millisecond pulsars are accel-
erated to their fast rotation rates by accreting matter from a close
companion. This means that they tend to be relatively old. Moreover,
the fastest spinning pulsars should have weak (exterior) magnetic
fields. In the standard accretion model, neutron stars with canonical
1012 G dipole fields will reach equilibrium already at a modest spin.
A weak surface field is also expected since accretion leads to mag-
netic field burial. This picture agrees well with observational data.
Rapidly rotating neutron stars are most commonly found in binary
systems. It is well established that accreting neutron stars in low-
mass X-ray binaries (where the angular momentum transfer is more
efficient due to the long evolution time of the low mass partner)
can reach a millisecond rotation period. Furthermore, the fastest
known millisecond pulsar J1748−2446ad, with a period of 1.39 ms
(Hessels et al. 2006), is in a binary system. In fact, its companion,
with mass M ≥ 0.14 M�, could still fill the Roche lobe powering
the spin-up phase further. The mass and radius of J1748−2446ad
are unknown, but combining reasonable ranges for these parame-
ters, M = 1.4–2 M� and R = 10–14 km, with an empirical formula
for the maximum rotation of the star (Lattimer & Prakash 2004),

�K ≈ 6566
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)1/2 (
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)3/2

Hz , (1)
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one finds that the spin of this object lies in the range 0.48 �
�/�K � 0.96. In other words, it could be close to the mass-shedding
limit.

The temperature of a mature neutron star is likely below the
critical temperature, T c � 5 × 109 K, where neutrons and protons
are superfluid and superconducting, respectively. Depending on the
cooling mechanism, neutrino emission can cool a hot proto-neutron
star below this temperature shortly after its formation in a core
collapse supernova (see e.g. Page, Geppert & Weber 2006). In an
accreting system, the neutron star core temperature is not expected
to increase beyond Tc (nuclear burning in the accreted surface lay-
ers is thought to the heat the core to ∼108 K). Hence, all mature
neutron stars should contain degenerate superfluid neutrons in the
outer core and the inner crust and degenerate superconducting pro-
tons in the outer core. The deep core may contain more exotic phases
of matter, like superfluid hyperons and/or colour superconducting
quarks. Superfluidity influences the thermal evolution and the dy-
namical properties of a neutron star. In particular, the dynamics is
strongly affected by entrainment, the formation of quantized neu-
tron vortices, and the presence of new dissipative mechanisms like
mutual friction. An understanding of superfluid dynamics is crucial
for modelling many aspects of neutron star physics, ranging from
pulsar glitches and free precession to the mutual friction damping
of stellar oscillations and associated instabilities.

Tidal forces, accretion and glitches may trigger oscillations
and/or instabilities in rapidly rotating neutron stars. Observations
of such oscillations, either via electromagnetic or gravitational ra-
diation, would help us explore the exotic physics of these compact
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objects (Andersson & Kokkotas 1998; Benhar, Ferrari & Gualtieri
2004; Samuelsson & Andersson 2007). In this context, it is inter-
esting to note the differences in dynamics between neutron stars
above the superfluid transition temperature and colder systems. The
core of a hot young neutron star is relatively well described by
the Navier–Stokes equations. In contrast, a star with a superfluid
core requires a multifluid description. The standard model for such
systems is inspired by the two-fluid model for superfluid Helium
(Landau & Lifshitz 1959; Khalatnikov 1965; Tilley & Tilley 1990).
The oscillation spectrum of superfluid neutron stars reflects the pres-
ence of the additional degree of freedom (Epstein 1988). Basically,
the perturbed fluid elements in a two-fluid system can oscillate ei-
ther in phase or in a counter-phase motion. Previous studies, see for
example, Lee (1995), Andersson & Comer (2001), Prix & Rieutord
(2002) and Yoshida & Lee (2003a), have established that comov-
ing pulsations have spectral properties similar to single fluid stars.
Hence, it is natural to refer to such modes as ‘ordinary’ modes. The
countermoving degree of freedom leads to new oscillation modes
that are specific to the two-fluid systems. These are often referred to
as ‘superfluid’ modes. Later, when we write down the perturbation
equations for a superfluid neutron star core, we choose to work with
variables that are directly associated with the two types of motion.
This is natural if we want to distinguish spectral properties associ-
ated with the ‘superfluid’ degree of freedom. In addition, we use
the standard classification of neutron star oscillation modes, based
on the main restoring force that acts on a perturbed fluid element.
A rotating single fluid star can sustain acoustic and inertial modes
restored by pressure and the Coriolis force, respectively. When
thermal or composition gradients are present in the star, buoyancy
acts as restoring force for the so-called gravity modes (Unno et al.
1989; Reisenegger & Goldreich 1992). Previous work has shown
that superfluid neutron stars have two families of acoustic and in-
ertial modes, more or less clearly (depending on the stellar model)
associated with the comoving and countermoving fluid motion. It
is, however, not the case that all single fluid modes have a ‘double’
in the superfluid problem. The gravity modes are not present at all
in a superfluid core (Lee 1995; Andersson & Comer 2001; Prix
& Rieutord 2002). Their absence provides a potentially important
signature for neutron star seismology.

Rapidly rotating neutron stars have been studied in detail with
a variety of methods (see e.g. Stergioulas 2003). Yet, there have
not been any previous studies of multifluid dynamics in the rapid
rotation regime near the break-up limit. The oscillation modes of su-
perfluid neutron stars have only been calculated in the frequency do-
main using the slow rotation approximation (Lindblom & Mendell
2000; Yoshida & Lee 2003a,b). In that framework, the effects of the
stellar rotation are determined perturbatively as corrections to the
non-rotating results. The only previous attempt (that we are aware
of) to study superfluid oscillations for truly fast spinning stars is
the work by Lindblom & Mendell (2000). They extended the two-
potential formalism of Ipser & Lindblom (1990) to the superfluid
case. However, due to numerical difficulties they could not study
rotating models near the break-up limit. Neither did they manage to
determine the superfluid modes.

In this work, we study the time evolution of perturbed fast rotat-
ing, Newtonian superfluid neutron stars within the Cowling approx-
imation. As far as we are aware, this is the first study that evolves
in time the oscillations of superfluid neutron stars. Moreover, it is
the first detailed analysis of the rapid rotation regime. Within the
framework of the two-fluid formalism, we carry out a linear pertur-
bation analysis for stationary and axisymmetric equilibrium config-
urations. As preparation for more detailed studies, we consider rel-

atively simple models where the two fluids co-exist throughout the
star, and where the unperturbed configuration is in β-equilibrium.
These assumptions imply that the two fluids are corotating and share
the same external stellar surface in our background configurations.
We use these models to investigate the effects of entrainment, sym-
metry energy and rotation on the superfluid oscillation spectrum. In
order to establish the reliability of our numerical evolution code, we
compare our results to previous work for non-rotating and slowly
rotating models. We then consider, for the first time, the dynamics
of superfluid models rotating up to the mass shedding limit.

2 EQUAT I O N S O F M OT I O N

We use the two-fluid framework for superfluid neutron stars
(Mendell 1991a,b; Prix 2004; Andersson & Comer 2006). This
model distinguishes between a superfluid neutron component and
a neutral mixture of protons and electrons. The charged particles
are assumed to be locked together by the electromagnetic interac-
tion on a time-scale much shorter than the dynamics we consider.
For simplicity, we refer to the charged particle conglomerate as the
‘protons’ from now on.

When the mass of each component is conserved, the dynamics is
described by two mass conservation laws, two Euler-type equations
and the Poisson equation for the gravitational potential (Prix 2004):

∂t ρx + ∇i

(
ρxv
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x

) = 0 , (2)
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(3)

∇2� = 4πGρ . (4)

Here, the indices i and k label the spatial components of the vec-
tors while x and y denote the two fluid components. The con-
stituent indices are n for the neutrons and p for the protons. Note
that the summation rule for repeated indices applies only for spa-
tial and not for constituent indices. In equations (2)–(4), ρ =
ρn + ρp and � represent the total mass density and the gravita-
tional potential, respectively. Meanwhile, f x is the force density
acting on the x fluid component. In this work, we consider an iso-
lated system where dissipation processes, like mutual friction, are
absent. We then have f x = 0. Furthermore, we have assumed that
the particle masses are equal, m = mn = mp, and defined the chem-
ical potential and the relative velocity between the two fluids as
follows:

μ̃x ≡ ∂E
∂ρx

∣∣∣∣
ρy,w2

xy

, (5)

w
xy
i ≡ vx

i − v
y
i . (6)

The energy functional E = E(nn, np, w
2
np) describes the equation of

state (EoS) of the system. Finally, the non-dissipative entrainment
between the two fluids is governed by the parameter εx, which
follows from the definition:

εx ≡ 2ρx
∂E

∂w2
np

∣∣∣∣∣
ρx,ρy

. (7)

The equations that describe rapidly and uniformly rotating back-
ground models can be derived by integrating the Euler-type equa-
tions (3) and the Poisson equation (4) (Prix, Comer & Andersson
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2002; Yoshida & Eriguchi 2004). This leads to

μ̃x + � − r2

2
sin θ2 �2

x = Cx , (8)

where �x and Cx are, respectively, the angular velocities and the
integration constants for the neutron and proton fluids.

In this work, we focus on corotating background models,
�n = �p = �, where the two fluids are in β-equilibrium and
have a common surface. The hydrostatic equilibrium equation (8)
then becomes

μ̃ + � − r2

2
sin θ2 �2 = C , (9)

where μ̃p = μ̃n ≡ μ̃ is the background chemical potential and C ≡
Cn = Cp. It is worth noticing that equations (4) and (9) are formally
equivalent to the single fluid problem provided one replaces the
chemical potential with the enthalpy (Yoshida & Eriguchi 2004).
Given an EoS, equations (4) and (9) can be numerically solved
using the self-consistent field method of Hachisu (1986). The sur-
face of the star corresponds to the zero chemical potential surface,
μ̃[r(θ ), θ ] = 0 (Yoshida & Eriguchi 2004).

3 PE RT U R BAT I O N EQUAT I O N S

It is straightforward to write down the system of partial differential
equations that governs the Eulerian perturbations δρx, δvx, δμ̃x and
δ�. However, instead of working with these variables, we define
(see Andersson, Glampedakis & Haskell 2008, for a detailed dis-
cussion) new variables which are more closely related to the natural
degrees of freedom of the problem. In the rotating frame, the co-
moving (ordinary) motion is described by the mass flux f (not to
be confused with the mutual force f x), the total mass density δρ

and the pressure δP , defined by

f = ρpδvp + ρnδvn , (10)

δρ = δρn + δρp , (11)

∇δP = δ(ρp∇μ̃p + ρn∇μ̃n). (12)

Meanwhile, the countermoving (superfluid) motion is described by
a vector field D that is proportional to the relative velocity between
the two fluids, the scalar perturbation δβ that measures the deviation
from β-equilibrium and the quantity δχ p, which is related to the
perturbed proton fraction. These variables are defined by

D = xp(1 − xp)ρ(δvp − δvn) , (13)

δβ = δμ̃p − δμ̃n , (14)

δχp = ρ δxp , (15)

where xp = ρp/ρ is the proton fraction.
In order to simplify the evolutions, we neglect the perturbations

of the gravitational potential δ� = 0. That is, we adopt the Cowling
approximation. This approximation should be quite accurate for
inertial modes. For low-order acoustic modes, like the f mode, it
is not so accurate but the results are still qualitatively correct. For
our present purposes, this should be sufficient. Although, it would
not be too difficult to solve also for the perturbed gravitational
potential, it is computationally costly to add the solution of an
elliptic equation to our evolutions. Hence, we decided not to solve
the full problem in this first exploratory study.

In the frame of the rotating background, the final perturbation
equations can be written as

∂t f = −∇δP − 2� × f + ∇P

ρ
δρ , (16)

∂t D = −xp(1 − xp)ρ∇δβ

1 − ε̄
− 2� × D

1 − ε̄
, (17)

∂t δρ = −∇ · f , (18)

∂t δχp = −∇ · D − f · ∇xp , (19)

where we have defined ε̄ = εn/xp.
The time evolution of the non-axisymmetric perturbation equa-

tions is a three-dimensional problem in space. However, linear per-
turbations on an axisymmetric background can be expanded in terms
of a set of basis functions (cos mφ, sin mφ), where m is the azimuthal
harmonic index (Papaloizou & Pringle 1980). The mass density
perturbations as well as the other perturbation quantities take the
following form (Jones, Andersson & Stergioulas 2002; Passamonti
et al. 2009):

δρ (t, r, θ, φ) =
m=∞∑
m=0

[
δρ+

m (t, r, θ ) cos mφ + δρ−
m (t, r, θ ) sin mφ

]
.

(20)

The perturbation equations now decouple with respect to m and
the problem becomes two-dimensional. Therefore for any m, the
non-axisymmetric oscillations of a superfluid neutron star requires
the solution of a system of 18 partial differential equations for the
20 variables ( f ±, δρ±, δP ±, D±, δχ±

p , δβ±). To fully specify the
problem, the set of equations (16)–(19) must be complemented by
two relations that depend on the EoS (see Section 4).

3.1 Boundary conditions

In order to evolve the perturbation equations, we must also specify
boundary conditions. For non-axisymmetric oscillations with m ≥
2, equations (16)–(19) are regular at the origin, r = 0, when the
following conditions are satisfied,

δP = δχp = δβ = δρ = 0 , and f = D = 0. (21)

For the boundary condition at the stellar surface, it is worth
remembering that the unperturbed configuration is such that the
two fluids have a common surface (see Section 1). At the perturbed
level, we require that the Lagrangian perturbation of the chemical
potentials vanishes at the surface, that is

�xμ̃x = δμ̃x + ξ x · ∇μ̃x = 0 , (22)

where the Lagrangian variations �x are associated with the fluid dis-
placements ξ x (Andersson, Comer & Grosart 2004b). Equation (22)
can be expressed in terms of δP and δβ by using the definitions
(12) and (14). This leads to

�P = δP + [xp ξ p + (1 − xp)ξ n] · ∇P = 0 , (23)

�β = δβ + (ξ p − ξ n) · ∇P

ρ
= 0 , (24)

where we have used the fact that the background model is in β-
equilibrium condition, that is μ̃n = μ̃p.

As in the single fluid case, we can derive a simpler condition for
the pressure perturbation. From the Euler equation, for the stationary
background (noting that (12) holds also at the unperturbed level),

∇P = −ρ� × (� × r) − ρ∇� , (25)
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and the fact that the EoS used in this work are such that the total
mass density vanishes at the surface, it follows that equation (23) is
equivalent to (Tassoul 1978)

δP = 0 . (26)

This condition is numerically convenient, and ensures that all vari-
ables remain regular at the surface.

The reflection symmetry with respect to the equator divides the
perturbation variables into two sets (Passamonti et al. 2009). Pertur-
bations of the Type I parity class have (fr, f φ , δρ, δP , Dr, Dφ , δχ p,
δβ) even and (f θ , Dθ ) odd. The opposite is true for perturbations
of Type II.

4 EQUATION O F STATE

To complete the formulation of the superfluid oscillation problem,
we need to supply a suitable multiparameter EoS. In a truly realistic
model, the EoS should be obtained from a microscopic (quantum)
analysis. It will completely specify not only the relation between
pressure and density, but also the composition and the detailed
superfluid energy gaps for neutrons and protons. Moreover, it has
to provide the entrainment parameters. We do not yet have such a
model, although recent developments in this direction are promising
(Chamel 2008). Given this, and the fact that our main aim is to
understand the oscillations of a rotating superfluid neutron star at
the qualitative level, we will opt to work with two simple analytic
model equations of state. These models, described in Sections 5.1
and 5.2, are natural generalizations of the single fluid polytropes.
The analytical models are particularly useful since they allow us to
tune key parameters like entrainment and symmetry energy more or
less freely. As we will see, we can also vary the coupling between
the comoving and countermoving fluid degrees of freedom.

Quite generally, the required energy functional can be expressed
as a function of the two fluid mass densities and the relative velocity

E = E
(
ρn, ρp, w

2
np

)
, (27)

where the dependence on wnp ensures Galilean invariance. For a
small relative velocity between the two fluids, equation (27) can be
written

E = E0(ρn, ρp) + α0(ρn, ρp)w2
np + O

(
w4

np

)
, (28)

in which case the bulk EoS E0 and the entrainment α0 can be
independently specified at wnp = 0. From equation (7) follows that
the entrainment parameter εx is related to the function α0 by

ρxεx = 2α0 . (29)

Having specified the EoS, we must determine two equations that
close the system (16)–(19). One possible choice is to determine the
pressure perturbation and the quantity δβ from the total density and
the proton fraction,

δP = δP (δρ, δxp) , δβ = δβ(δρ, δxp). (30)

The required relations are obtained by first expressing these quan-
tities in terms of the chemical potential perturbations δμ̃x, that is
using the thermodynamic definitions

δP = ρpδμ̃p + ρnδμ̃n , (31)

δβ = δμ̃p − δμ̃n . (32)

For corotating background models (wnp = 0), the perturbation of
the chemical potential μ̃x = μ̃x(ρp, ρn) can be expressed as

δμ̃x = ∂μ̃x

∂ρp

∣∣∣∣
ρn

δρp + ∂μ̃x

∂ρn

∣∣∣∣
ρp

δρn , (33)

where the mass densities of the two fluid components are defined
in terms of the total mass density and proton fraction by

δρp = xpδρ + ρ δxp, (34)

δρn = (1 − xp)δρ − ρ δxp. (35)

By introducing equations (33)–(35) into equations (31)–(32), we
obtain

δP = {[(1 + 2σ )x2
p − 2(1 + σ )xp + 1]Ann + x2

pApp}ρ δρ

+{[(1 + 2σ )xp − 1 − σ ]Ann + xpApp}ρ δχp, (36)

δβ = {[(1 + 2σ )xp − 1 − σ ]Ann + xpApp}δρ
+ [(1 + 2σ )Ann + App]δχp, (37)

where the matrix Axy is defined by

Axy ≡ ∂μ̃x

∂ρy
= ∂2E

∂ρy∂ρx
, (38)

and σ corresponds to the so-called ‘symmetry energy’ (Prakash,
Lattimer & Ainsworth 1988; Prix, Comer & Andersson 2002). That
is, we have

σ ≡ −Anp

Ann
. (39)

5 STELLAR MODELS

Background stellar models such that the two fluids are corotating can
be constructed by solving the hydrostatic equilibrium equations (4)
and (9) for a given bulk EoS E0, cf. (28). Since equations (4) and
(9) are formally equivalent to the equilibrium equations for a single
fluid polytrope, we can straightforwardly use the method of Hachisu
(1986) to determine such background models (see Section 2).

For a corotating background, entrainment does not affect the
equilibrium configuration. Hence, it can be chosen independently
from the bulk EoS (see equations 28 and 29). In fact, the entrainment
parameter appears only in the perturbation equation (17) through
the combination

ε̄ = εn

xp
= εp + εn . (40)

In the last step, we have used the relation (29), that is ρnεn =
ρpεp.

Nuclear physics calculations limit the value of the entrainment
in the neutron star core to 0.2 ≤ εp ≤ 0.8, see Chamel (2008) for a
recent analysis. However, values outside this range are possible, es-
pecially for the crust superfluid. In fact, the parameter εp is expected
to have negative values in the crust region (Chamel 2006). Since we
are interested in exploring the effect that the different parameters
have on the neutron star oscillation modes, we will consider the
range −0.7 ≤ ε̄ ≤ 0.7.

5.1 Model A

As our first model EoS, we consider (see, Prix et al. 2002; Yoshida
& Eriguchi 2004)

E0 = 1

2

∑
x,y

Axyρxρy . (41)
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We will refer to this as model A. Despite its obvious simplicity,
this model allows us to investigate the effect of the symmetry en-
ergy on the oscillation spectrum. This is apparent from the matrix
coefficients Axy which have the following form:

Ann = 2K

1 − (1 + σ )xp
, (42)

App = 2K[1 + σ − (1 + 2σ )xp]

xp[1 − (1 + σ )xp]
, (43)

Anp = −σAnn , (44)

where σ and K are constants. Equations (42)–(44) are equivalent to
the set used by Yoshida & Eriguchi (2004) with 2K = 1/k. From
the β-equilibrium condition for the stellar background, μ̃n = μ̃p,
and the definition (5) we can derive the proton fraction for these
models

xp = (1 + σ ) Ann

App + (1 + 2σ ) Ann
. (45)

If we take the coefficients Axy to be constant, model A leads to a
family of non-stratified stars. The perturbation variables are related
by equations (36)–(37) which in this case become

δP = 2Kρ δρ , δβ = 2K(1 + σ )

xp[1 − (1 + σ )xp]
δχp . (46)

Therefore, the models are specified by the three parameters K , σ

and xp. For this class of models, the degrees of freedom that describe
the comoving and countermoving fluid motion are decoupled. The
variables f , δρ, δP evolve independently from D, δχ p, δβ. This is
a useful simplification that helps the interpretation of the oscillation
spectrum.

For a background star in β-equilibrium, the chemical potential is
related to the total mass density by

μ̃ = 2Kρ , (47)

which means that the pressure is that of the usual N = 1 polytrope:

P = Kρ2 . (48)

We have constructed a family of rotating stars for this EoS. In
dimensionless units, the constant K is determined automatically
by specifying the polytropic index and the axis ratio between the
polar and equatorial radius Rp/Req (Jones et al. 2002; Passamonti
et al. 2009). The properties of our rotating models are given in
Table1 1, where we also label each member of the sequence. The
non-rotating model is referred to as A0 and the fastest rotating
model is A11. Being non-stratified stars, the values of both the
proton fraction xp and the symmetry energy term σ affect only the
countermoving motion of the perturbed fluid. In fact, they appear
only in the perturbation equations (17) and (19), and in equation (46)
for the δβ perturbation. In our numerical simulations, we focus
mainly on stars with xp = 0.1 and −1 ≤ σ ≤ 1. The range of
the symmetry energy is constrained by the requirement that Axy

should be invertible (see e.g. Prix et al. 2002) as well as realistic

1 In compiling Table 1, we noted an error in the data reported in Passamonti
et al. (2009). The data given in the fourth column of Table 1 of that paper
is incorrect. For the sequence of stellar model A, the correct value of the
break-up angular velocity is �K/

√
Gρc = 0.7252 and the present table

gives the correct values for the related quantity �/�K. We also note a typo
in the label of the fifth column in the previous paper, where T /|W | × 10−2

should be replaced by T /|W | × 102.

calculations for neutron star EoS (Lattimer & Prakash 2007). For
simplicity, we will assume that the symmetry energy is constant
throughout the star.

5.2 Model B

Our second model EoS is constructed in such a way that we can
explore the relevance of the chemical coupling between the two fluid
degrees of freedom that arises due to composition variation. We
consider the simple analytical EoS (Andersson, Comer & Langlois
2002; Prix & Rieutord 2002),

E0 = knρ
γn
n + kpρ

γp
p , (49)

where kx are constant coefficients. For this EoS, the symmetry en-
ergy term vanishes, as Anp = 0. However, the polytropic indices
N x = (γ x − 1)−1 of the neutron and proton fluids can be different,
that is N n = N p. This enables us to construct stratified config-
urations. To see this, consider the relation between the chemical
potential and the mass density

ρx =
(

μ̃x

kxγx

)Nx

, (50)

which for a model in β-equilibrium leads to the following profile
for the proton fraction,

xp =
[

1 + (γpkp)Np

(γnkn)Nn
μ̃Nn−Np

]−1

. (51)

For a vanishing symmetry energy, equations (36)–(37) become

δP = [(
x2

p − 2xp + 1
)
Ann + x2

pApp

]
ρ δρ

+ [(xp − 1)Ann + xpApp]ρ δχp, (52)

δβ = [(xp − 1)Ann + xpApp]δρ + (App + Ann)δχp . (53)

For model B the Axy coefficients are explicitly given by

Axx = kxγx(γx − 1)ργx−2
x . (54)

We have constructed two different non-rotating models for this
analytic EoS. These two models are labelled BNS and B0, and
correspond to (after a transformation of units) models I and II of
Prix & Rieutord (2002). The parameters for models BNS and B0 are
given in Table 2. Comparing models I and II of Prix & Rieutord
(2002) to our numerical models, we find an agreement to better than
1 per cent for the dimensionless stellar mass M/(ρcR

3
eq).

The non-rotating BNS model represents a non-stratified star, γ p =
γ n, with a constant proton fraction given by

xp = kn

kn + kp
= 0.1 . (55)

This means that, the comoving and countermoving perturbations
are decoupled and equations (52)–(53) become

δP = 2
knkp

kn + kp
ρ δρ , δβ = 2(kn + kp)δχp . (56)

We use this model to test our evolutions against the frequency
domain results of Prix & Rieutord (2002).

In addition, we consider a rotating sequence, which extends B0
up to the fastest rotating model B12. All our rotating B models
correspond to the same γ x and kx as the B0 model. Therefore, any
rotating B model is stratified with xp(0) = 0 at the centre and zero
proton fraction at the star’s surface. Due to the effect of rotation
on the central density and chemical potential, the central proton
fraction is xp(0) = 0.1 for the non-rotating model B0 and becomes
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Table 1. This table provides the main parameters for the rotating models A and B (see Sections 5.1
and 5.2 for the detailed EoS). The first column labels each model. In the second and third columns, we
show the ratio of polar to equatorial axes and the angular velocity of the star, respectively. In the fourth
column, the rotation rate is compared to the Kepler velocity �K that represents the mass shedding limit.
The ratio between the rotational kinetic energy and gravitational potential energy T /|W | and the stellar
mass are given in the fifth and sixth columns, respectively. All quantities are given in dimensionless
units, where G is the gravitational constant, ρc represents the central mass density and Req is the
equatorial radius.

Model Rp/Req �/
√

Gρc �/�K T /|W | × 102 M/(ρcR
3
eq)

A0 1.000 0.000 0.000 0.000 1.273
A1 0.996 0.084 0.116 0.096 1.270
A2 0.983 0.167 0.230 0.385 1.248
A3 0.950 0.287 0.396 1.169 1.197
A4 0.900 0.403 0.556 2.385 1.118
A5 0.850 0.488 0.673 3.639 1.038
A6 0.800 0.556 0.767 4.933 0.956
A7 0.750 0.612 0.844 6.252 0.869
A8 0.700 0.658 0.907 7.568 0.779
A9 0.650 0.693 0.956 8.822 0.684
A10 0.600 0.717 0.989 9.865 0.579
A11 0.558 0.725 0.999 10.277 0.480

B0 1.000 0.000 0.000 0.000 1.833
B1 0.996 0.094 0.107 0.105 1.825
B2 0.983 0.187 0.213 0.419 1.799
B3 0.950 0.323 0.368 1.275 1.733
B4 0.900 0.453 0.516 2.608 1.632
B5 0.850 0.551 0.628 4.002 1.529
B6 0.800 0.629 0.717 5.459 1.424
B7 0.750 0.695 0.792 6.981 1.317
B8 0.700 0.751 0.856 8.566 1.207
B9 0.650 0.798 0.909 11.020 1.093

B10 0.600 0.835 0.952 11.862 0.973
B11 0.563 0.857 0.977 13.074 0.875
B12 0.496 0.877 0.999 14.613 0.669

Table 2. This table provides the parameters for two non-rotating
stellar models for the EoS (49). We refer to these models as
BNS and B0. They correspond to models I and II of Prix &
Rieutord (2002), respectively. The units of the coefficients kx

are GR2
eqρ

2−γx
c , where G is the gravitational constant and Req is

the equatorial radius. The proton fraction at the star’s centre is
xp(0), while the central mass density is ρc.

Model γ n γ p kn kp xp(0) M/(ρcR
3
eq)

BNS 2.0 2.0 0.705 6.343 0.1 1.273
B0 2.5 2.1 0.706 8.866 0.1 1.833

xp(0) � 0.081 for model B12, which is near the mass shedding limit.
These stratified models are physically interesting, as the relations
(52)–(53) and the perturbation equations couple the comoving and
countermoving degrees of freedom and we can study the effect
of this coupling on the spectrum of stellar oscillations. The main
properties of the B models are given in Table 1.

6 R ESULTS

In this section, we present the results of the first ever time-evolution
study of perturbed, rapidly rotating, superfluid stars. The main aim
is to explore how fast rotation, symmetry energy and entrainment
affect the non-axisymmetric oscillation modes.

6.1 The evolution code

The evolution problem for equations (16)–(19) is intrinsically a
three-dimensional problem. As already mentioned, the Fourier de-
composition of the azimuthal degree of freedom, identifying spe-
cific m modes, reduces the problem to two spatial dimensions. In
spherical coordinates, we can then evolve this system of equations
on a two-dimensional grid based on the coordinates r and θ . How-
ever, instead of using r, we adopt a new radial coordinate x =
x(r , θ ), fitted to surfaces of constant pressure (Jones et al. 2002;
Passamonti et al. 2009). This leads to an easier implementation of
the surface boundary conditions. As we are working in the time do-
main, the various mode frequencies are extracted by a Fast Fourier
Transformation (FFT) of the time evolved perturbation variables.

The numerical code for superfluid neutron stars extends the sin-
gle fluid code developed by Passamonti et al. (2009). In fact, with
our chosen variables the Euler equation (16) and the mass con-
servation equation (18) are identical to the single fluid case. We
have thus extended the previous code by adding equations (17) and
(19), together with the appropriate boundary conditions. The main
elements of the code are the use of a Mac-Cormack algorithm, a
second-order accurate numerical scheme both in space and time,
and the implementation of a fourth-order Kreiss–Oliger numerical
dissipation, which stabilizes the simulations against spurious high
frequency oscillations. The performance of the final code is practi-
cally identical to that of the single fluid code, see Passamonti et al.
(2009) for details.
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6.2 Initial Data

In a time domain study, the initial perturbations can be chosen to
excite specific parts of the spectrum. Of course, a strict selection
of oscillation modes requires the determination of eigenfunctions
to be used as initial data. To achieve this, one would have to either
solve the frequency domain version of the perturbation equations
(16)–(19) or perform an eigenfunction recycling study of the time
evolutions (Stergioulas, Apostolatos & Font 2004; Dimmelmeier,
Stergioulas & Font 2006). In this work, we use neither of these
strategies. We are interested in a multimode analysis where many
oscillation modes are excited in each simulation. As discussed by
Passamonti et al. (2009), this is easily achieved by the use of initial
perturbations with an arbitrary radial profile and an angular depen-
dence appropriate for the general class of eigenfunction. For the
radial part, we typically use a Gaussian distribution. Meanwhile the
angular functions are inspired by slow-rotation results.

Type I parity perturbations are generally excited with the follow-
ing mass density and proton fraction perturbations:

δρ = A0 exp

[
−

(
r − r0

qR(θ )

)2
]
Yll(θ, φ) , (57)

δχp = A1 exp

[
−

(
r − r0

qR(θ )

)2
]
Yll(θ, φ) , (58)

where A0 and A1 are two arbitrary constants that determine the
initial values of δρ and δχ p on the star’s surface. The stellar radius
at polar angle θ is denoted by R(θ ), and the parameters r0 and q,
respectively, determine the centre of the Gaussian profile and its
width. The l = m spherical harmonic Yll(θ , φ) approximates the
typical angular behaviour of a polar mode in a spherical star. For
simplicity, all other perturbation variables are set to zero to complete
the initial data.

For Type II parity perturbations, we use the following initial data
for the vector fields f and D:

f = ρ exp

[
−

(
r − r0

qR(θ )

)2
]
Y B

ll (θ, φ) , (59)

D = xp

(
1 − xp

)
ρ exp

[
−

(
r − r0

qR(θ )

)2
]
Y B

ll (θ, φ) . (60)

Here, Y B
ll (θ , φ) is a magnetic spherical harmonic (Thorne 1980).

The remaining perturbations are set to vanish on the initial time
slice.

6.3 Inertial modes

Let us first consider the inertial modes which in a superfluid star
split (more or less clearly depending on the EoS) into ordinary and
superfluid modes. In the first class, the perturbed fluid elements
of the two components oscillate in phase, whereas for the super-
fluid modes they pulsate in counter-phase. As for single fluid stars,
each inertial mode can be classified by its parity as an axial-led or
polar-led inertial mode (Lockitch & Friedman 1999). Among the
axial-led inertial modes, the r modes form a well-defined subset.
They are the only modes that are purely axial in the slow-rotation
limit. In stratified neutron stars, only the comoving r mode exists.
The countermoving mode is no longer purely axial, but acquires a
polar component already at leading order in the rotation (Haskell,
Andersson & Passamonti 2009). In a non-stratified neutron star, on

the other hand, the ordinary and superfluid degrees of freedom are
completely decoupled and a purely axial countermoving r mode
exists (Andersson et al. 2008; Haskell et al. 2009).

Up toO(�), the frequencies of the superfluid and ordinary inertial
modes are related according to (Prix, Comer & Andersson 2004)

ωs � γε ωo , (61)

where γε ≡ (1− ε̄)−1. It makes sense, as a first step, to investigate to
what extent the inertial-mode frequencies deviate from this simple
scaling law in the case of rapid rotation. To do this, we consider
model A with fixed entrainment parameter ε̄ = 2/3 and proton
fraction xp = 0.1. For the symmetry energy term, we consider four
different values σ = −1/2, 0, 1/2, 4/5. The results are shown in
Fig. 1. In the left-hand panel, we show the l = m = 2 ordinary and
superfluid r modes. The ordinary ro mode is represented by a solid
line and the expected frequency (61) of the superfluid rs mode is
also indicated. Our results show that the rs-mode frequencies for
different values of σ agree well with equation (61) roughly up to
a stellar rotation �/

√
Gρc � 0.2. For faster rotation, the rs-mode

frequency depends strongly on the symmetry energy.
In order to confirm these results, we also considered the su-

perfluid r modes within the slow-rotation approximation (Haskell
et al. 2009). The approximate results confirm that, even though one
should expect the countermoving inertial modes to approach (61)
as σ → 1, the relation does not hold perfectly even in the extreme
limit.

Our results show that the rs-mode frequency remains closer to the
values expected from equation (61) for larger σ . Similar behaviour
is noted for other inertial modes. In the right-hand panel of Fig. 1,
we show three l = 4, m = 2 axial-led inertial modes for σ = ±1/2.
The dependence on the symmetry energy term is distinguishable
beyond �/

√
Gρc ≈ 0.25 also for these modes. These results can

be understood from a local plane-wave analysis, see Appendix A
for a detailed discussion.

We can also compare our results to the superfluid r-mode fre-
quencies calculated by Haskell et al. (2009), who worked in the
slow-rotation approximation keeping terms up to O(�3). The l =
m = 2 r s frequency is then given by

ωs = c0 � + c2 �3 , (62)

where c0 and c2 are constants that depend on the stellar model and
the multipole of the modes. The first coefficient has the well-known
analytical expression,

c0 = γε

2m

l (l + 1)
, (63)

while c2 is given in closed form by Haskell et al. (2009). For the
l = m = 2 r s mode of a model A star with ε̄ = 2/3 and xp =
0.1, we have c0 = 2 and the values for c2 given in Table 3. In
Fig. 2, we compare the rs-mode frequencies extracted from our
evolutions to those determined analytically by Haskell et al. (2009)
for different values of the symmetry energy. In the left-hand panel,
we show how the rs-mode frequency depends on the star’s rotation
for two selected models with σ =±1/2. The right-hand panel shows
the relative error between the frequencies obtained with the two
methods. The agreement is better than 3 per cent up to �/

√
Gρc ≈

0.55, which corresponds to a rapidly rotating star with �/�K ≈ 0.77
(see Table 1). For faster rotation, the errors become larger and reach
11 per cent near the mass shedding limit. In order to improve the
accuracy, the slow-rotation analysis would need to consider higher
order corrections. This may be prohibitively difficult.

The dependence of the superfluid inertial modes on the proton
fraction is very weak for model A neutron stars. That this should be
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Figure 1. This figure shows the frequencies of the axial-led inertial modes and their dependence on the star’s spin and the symmetry energy σ for the sequence
of rotating models A with proton fraction xp = 0.1 and entrainment parameter ε̄ = 2/3. The mode frequencies and the stellar angular velocity are given in
units of

√
Gρc, where G is the gravitational constant and ρc the central mass density. The mode frequencies are determined in the frame of the rotating star.

In the left-hand panel, we show the ordinary ro mode and the superfluid rs modes for different values of σ in the range −1/2 ≤ σ ≤ 4/5. For fast rotating
models, �/

√
Gρc > 0.25, the rs mode deviates from the simple slow-rotation relation (61), where γε = 1/(1 − ε̄) = 3 because of the symmetry energy. In the

right-hand panel, we show three l = 4, m = 2 superfluid inertial modes for σ = −0.5 and 0.5. These results also show a clear dependence on the symmetry
energy. It is worth noticing that, for the non-stratified models A the ordinary inertial modes are equal to the results for single fluid N = 1 polytropes, where N
is the polytropic index.

Table 3. The coefficient c2 required in equation (62)
for the l = m = 2 superfluid r mode. The values of c2

are given in the units used in Haskell et al. (2009), that
is GM/R3. Here, we have used the mass M and the
radius R for the non-rotating model A0, with ε̄ = 2/3
and xp = 0.1.

σ c2

−0.5 −1.052
0.0 0.452
0.5 0.956
0.8 1.123

expected can be seen from equation (A9). To confirm this, we have
evolved the fast rotating model A8 with xp = 0.01. The frequencies
for this model differ by less than 1 per cent from the xp = 0.1 case.

6.4 Acoustic modes

Let us now study the effects of entrainment and symmetry energy
on the fundamental and pressure modes of a superfluid star. The
acoustic mode spectrum is characterized by the usual two classes
of ordinary (comoving) and superfluid (countermoving) modes. We
will focus on the quadrupole l = m = 2 modes. These are the modes
that tend to be the most relevant for gravitational-wave studies.

First, we consider the oscillations of two non-rotating equilibrium
configurations, the non-stratified BNS model and the stratified B0
model described in Section 5.2. In Fig. 3, we show the variation of
the fundamental quadrupole mode and the first two quadrupole pres-
sure modes with the entrainment parameter ε̄. In order to determine
the comoving and countermoving character of a mode, we have
first reconstructed the time variation of the component velocities

δvx from the primary dynamical variables f and D. Post process-
ing the numerical evolution data, we have determined the velocity
components using the eigenfunction extraction code developed by
Stergioulas et al. (2004) and Dimmelmeier et al. (2006). For any
mode, we have then compared the velocity eigenfunctions of the two
fluid components and determined whether they oscillate in phase or
counter-phase. In Fig. 3, the solid lines represent modes that oscil-
late in phase, while dashed lines correspond to modes that pulsate in
counter-phase. In absence of composition gradients (model BNS in
the left-hand panel of Fig. 3), the comoving and countermoving de-
grees of freedom are completely decoupled and the spectrum does
not exhibit any interaction between ordinary and superfluid modes.
They are actually related by the simple expression, cf. (A9),

ωs � √
γε ωo . (64)

The spectrum of stratified superfluid stars is more interesting.
From the right-hand panel of Fig. 3, we note that the coupling be-
tween ‘ordinary’ and ‘superfluid’ perturbations generates avoided
crossings, where the oscillation phase of the mode changes at
(roughly) ε̄ = 0. This behaviour is more evident in the ordinary
and superfluid pressure modes. From our data, there does not ap-
pear to be an avoided crossing for the fundamental mode. However,
the region where this crossing should take place is difficult to re-
solve with our evolutions. We have tried different initial data sets,
but only managed to find a single f mode at ε̄ = 0. Non-radial
oscillations of the BNS and B0 models have already been studied by
Prix & Rieutord (2002), although not within the Cowling approxi-
mation. A direct comparison with their results is not possible since
the Cowling approximation can introduce a 15–20 per cent error in
the f-mode frequencies. However, the qualitative behaviour of the
acoustic spectrum in the two studies is clearly similar.

In order to investigate the effect of entrainment on the rotational
splitting of the non-axisymmetric acoustic modes, we consider a
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Figure 2. In this figure, we compare our rotating frame frequencies for the r modes with the slow rotation results of Haskell et al. (2009), which include O(�3)
corrections. In the left-hand panel, we show the l = m = 2 rs and ro-mode frequencies for the rotating models A with σ = ±1/2, proton fraction xp = 0.1,
and entrainment parameter ε̄ = 2/3. Our numerical results are shown as solid lines, while the frequencies of Haskell et al. (2009) are represented by dashed
lines. The right-hand panel provides the relative error between the rs-mode frequencies calculated with the two methods, where the dotted lines denote the 2
per cent level. The results show that the calculated frequencies agree to better than 2 per cent up to a stellar angular velocity of �/

√
Gρc ≈ 0.4.
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Figure 3. This figure illustrates the dependence of the l = m = 2 acoustic modes on the entrainment parameter ε̄ for two non-rotating stellar models, the
non-stratified BNS model (left-hand panel) and the stratified B0 model (right-hand panel). Solid and dashed lines represent oscillation modes where neutrons
and protons move, respectively, in phase (ordinary modes) and counterphase (superfluid modes). The spectrum of the B0 model shows some avoided crossings.
Avoided crossings are expected in a stratified neutron star as the comoving and countermoving degrees of freedom are coupled.

sequence of A models with σ = 0 and models B. In Fig. 4, we show
results corresponding to the l = m = 2 acoustic modes in the ε̄ =
0.5 case. For the generic initial data given by equations (57)–(58),
many oscillation modes are excited in the numerical simulations. By
studying their eigenfunctions, we can track individual modes from
the non-rotating model up to the mass shedding limit. An example is
illustrated in the left-hand panel of Fig. 4, where the rotating frame
frequencies of the superfluid f mode and the first two p modes are
shown for the A models. The countermoving fs mode exhibits a
larger rotational splitting compared to the two pressure modes. In
the right-hand panel of Fig. 4, we compare instead the normalized

frequencies of the superfluid f mode, namely ω/ωNR
s , for models

A and B. The horizontal-axis of this figure represents the stellar
rotation divided by the maximal angular velocity �K. The results
in the figure show that, even though the two classes of models have
the same value of the entrainment parameter, the non-axisymmetric
splitting of the f s mode is quite different in the two cases. This is
particularly clear in the rapid rotation regime. Meanwhile, the two
f s modes have very similar frequencies for � � 0.25�K.

It is instructive to explore the slow-rotation regime to see if
there is a simple relation between the fs-mode frequencies and the
entrainment. To this end, we determine the fs-mode frequencies
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s = ωs/

√
Gρc and the

two splitting parameters cr
1 and c

p
1 of equation (65) depend on the entrainment parameter γε = (1 − ε̄)−1. The superscripts r and p for the parameters cr

1 and c
p
1

denote retrograde and prograde modes, respectively. The quantities cr
1 and c

p
1 have been determined by a fit to the superfluid f-mode frequencies for models A

up to � � 0.556�K.

for models A and B with −0.7 ≤ ε̄ ≤ 0.7. In the left-hand panel
of Fig. 5, the variation of the fs-mode frequency with ε̄ is shown
for models A. It is useful to recall that these models have σ = 0
by construction. All modes have been normalized to the f-mode
frequency of the non-rotating star. The rotational splitting of the
modes strongly depends on the parameter ε̄. In order to quantify
the effect, we approximate the dimensionless mode-frequency ω̂s =
ωs/

√
Gρc (see Appendix A) by a second order polynomial in �̂ =

�/
√

Gρc,

ω̂s = ω̂NR
s + c1 (ε, σ, m) �̂ + c2 (ε, σ,m) �̂2 + O(�̂3) , (65)

where ω̂NR
s = ωNR

s /
√

Gρc is the superfluid mode frequency of the
non-rotating star, while c1 and c2 are two parameters that we fit to
the numerical data. In general, these parameters are functions of
the entrainment, the symmetry energy and the multipole m of the
mode. Since this is inherently a slow-rotation approximation, we
will only consider rotating models with � � 0.556�K. An accurate
description of the spectrum for more rapidly rotating models would
require higher order fitting functions. In the right-hand panel of
Fig. 5, we show the dependence of ω̂NR

s and c1 on

γε = (1 − ε̄)−1 , (66)
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Table 4. This table provides the values of the fitting parameters a ± �a

and b ± �b from equations (69) and (70) for the superfluid f mode of
the non-rotating star, that is ω̂NR

s , and the splitting coefficients cr
k and c

p
k

with k = 1, 2 for the retrograde and prograde fs modes. In the fits, we
have used the stellar models A and B with � � 0.556�K.

Models a �a b �b

ω̂NR
s A 1.8686 2.1 × 10−4 0.5000 1.5 × 10−4

cr
1 A 1.0034 4.7 × 10−3 0.9896 5.4 × 10−3

c
p
1 A −0.9744 1.7 × 10−3 1.0072 2.1 × 10−3

cr
2 A −0.5306 1.7 × 10−2 0.1513 1.1 × 10−2

c
p
2 A −0.5203 4.4 × 10−3 0.1570 2.8 × 10−3

ω̂NR
s B 2.1597 8.6 × 10−4 0.4987 1.0 × 10−3

cr
1 B 1.0091 3.4 × 10−3 0.9998 7.6 × 10−3

c
p
1 B −0.9837 3.8 × 10−3 1.0059 8.7 × 10−3

cr
2 B −0.1421 7.8 × 10−3 −0.0998 6.6 × 10−3

c
p
2 B −0.1461 1.2 × 10−2 0.1106 1.1 × 10−2

for models A. We have defined cr
1 and c

p
1 for retrograde and prograde

modes, respectively. If we assume that a perturbation variable is
proportional to ei(ωt+mφ), modes with positive (negative) m move
retrograde (prograde) with respect to the stellar rotation.

For non-stratified and non-rotating stellar models, equation (A9)
suggests that the superfluid and ordinary f-mode frequencies are
related according to

ω̂NR
s = √

γε χ (σ, xp) ω̂NS
o , (67)

where χ is a function of σ and xp that, in general, depends on the
EoS. For models A, this function is given explicitly by

χ 2 ≡ (1 + σ )(1 − xp)

1 − (1 + σ )xp
. (68)

Since we consider a sequence of models with σ = 0, it follows that
χ = 1. We test the accuracy of equation (67) against the f-mode
frequencies for models A shown in Fig. 5. Fitting our numerical
data to a function of form

aγ b
ε , (69)

we obtain the values for a and b listed in Table 4. These results
are in very good agreement with the analytical formula (67). In
fact, the ordinary f-mode frequency determined from our code is
ω̂o = 1.867, which agrees to better than 0.06 per cent with the fitted
value. Equation (67) also provides an accurate representation for
the f mode of the B models. In this case, the numerical evolutions
lead to ω̂o = 2.1598, which is within the error bar of the fitted
result, see Table 4. It should be noted that we do not have a simple
analytic expression for χ in the case of the B models. Numerical
results suggest that χ is only weakly dependent on the entrainment
also for this EoS.

Let us now consider the rotational corrections to the countermov-
ing f-mode frequency, cf. equation (65). We find that we can still
use the fitting function (69) for the parameter c1. This leads to the
results given in Table 4. These results suggest that the rotational
splitting parameter c1 depends linearly on the entrainment parame-
ter γ ε for both models A and B. This is also clear from the results
in Fig. 5. To describe the quantities cr

2 and c
p
2, we instead used the

following fitting function:

a + bγε

ω̂NR
s

. (70)

The results for a and b are given in Table 4. Despite the fact that
models B are stratified, the fs mode seems to maintain the same
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Figure 6. This figure shows the effect of the symmetry energy on the
rotational splitting of the quadrupole superfluid f mode. The data in the
figure corresponds to stellar models A with constant proton fraction xp =
0.1 and entrainment ε̄ = 2/3. The symmetry energy takes the three values
σ = −0.5, 0, 0.5.

dependence on the entrainment as for the non-stratified models A
in the slow rotation regime.

Building on this, let us try to understand the dependence on the
symmetry energy. To do this, we consider the sequence of rotat-
ing stellar models A and take the symmetry energy in the range
−1/2 ≤ σ ≤ 1/2. Meanwhile the proton fraction and the entrain-
ment are kept constant at xp = 0.1 and ε̄ = 2/3, respectively. The
fs-mode dependence on the stellar spin (for some of these models)
is shown in Fig. 6. In the figure, we have normalized the mode
frequencies to the f-mode frequency of the non-rotating model. The
results show that the rotational splitting of the l = m = 2 super-
fluid f mode decreases for larger values of the symmetry energy.
In the slow rotation regime, we can study this effect by fitting the
numerical data using equation (65). Adding the dependence on the
symmetry energy to our previous results, we now use the fitting
function

ω̂s = √
γεχ (σ, xp) ω̂NS

o + γεc̃1 (σ,m) �̂+ c̃2 (ε, σ, m) �̂2 +O(�̂3),
(71)

where c̃2 is in general different from c2, and we have assumed that
c̃1 is a function of only σ and m.

First, we consider the non-rotating case, using the ordinary fre-
quency of the f mode ω̂NS

o as a fitting parameter. The fitted result
agrees with the numerical value determined from the simulations to
better than 0.04 per cent. Empirically, we find that the parameters
c̃1 can be approximated by the function:

γε ã χ b̃

ω̂NR
s

. (72)

The determined values for ã and b̃ for model A are given in Table 5.
We find that the parameter c̃2 assumes less regular values. They
can be fitted with a quadratic polynomial in σ , but the fits are
not very accurate. Hence, we do not provide any of those results
here. However, as our main aim was to provide an approximate
description of the rotational splitting of the quadrupole superfluid f
mode, reliable values for the coefficient c̃1 should be sufficient.
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Table 5. This table provides the values of the fitting parameters
ã ± �ã and b̃ ± �b̃ from equation (72). They describe the splitting
functions c̃r

1 and c̃
p
1 for the l = m = 2 superfluid f mode. The labels

r and p denote retrograde and prograde fs modes, respectively. In the
fits, we have used results for models A with � � 0.556�K.

Models ã �ã b̃ �b̃

c̃r
1 A 0.3721 1.1 × 10−3 −0.985 1.5 × 10−2

c̃
p
1 A −0.3045 1.5 × 10−3 −1.024 2.0 × 10−2

7 C O N C L U S I O N S

In this paper, we have considered, for the first time, the oscilla-
tions of a superfluid neutron star as an initial-value problem. Using
time evolutions of the relevant linearized equations, we studied
non-axisymmetric oscillations of rapidly rotating superfluid neu-
tron stars. We considered perturbations of axisymmetric background
configurations in Newtonian gravity and accounted for the presence
of superfluid components via the standard two-fluid model. Within
the Cowling approximation, we were able to carry out evolutions
for uniformly rotating stars up to the mass-shedding limit. Our re-
sults represent the first detailed analysis of superfluid neutron star
oscillations in the fast rotation regime, where the star is significantly
deformed by the centrifugal force.

For simplicity, we focused on background models such that the
two fluids (superfluid neutrons and protons) corotate, are in β-
equilibrium and co-exist in all the volume of the star. Two different
analytical model equations of state were considered. The models
were chosen to represent relatively simple generalizations of single
fluid, polytropic stars. We investigated the effects of entrainment, ro-
tation and symmetry energy on various non-radial oscillation modes
of these models. Our results show that entrainment and symmetry
energy can have a significant effect on the rotational splitting of
non-axisymmetric modes. In particular, the symmetry energy mod-
ifies the inertial mode frequencies considerably in the regime of fast
rotation.

The perturbative time-evolution framework provides a useful tool
that should allow us to consider more realistic (and by necessity
complicated) neutron star models in the future. The clear advan-
tage over frequency-domain studies is that it is straightforward to
study oscillations corresponding to eigenfunctions with a complex
set of rotational couplings. This is particularly useful in the rapid
rotation regime. The obvious downside is that time evolutions can
never provide the ‘complete’ mode spectrum of the star. Initial
data has to be chosen in such a way that the oscillations of inter-
est are excited at a significant level. It is difficult to, without prior
knowledge, find initial data that excites only a few modes. In many
cases this is, however, less relevant. The main question is if one
can extract accurate information regarding the nature of the star’s
oscillations from the numerical data. The results we have presented
demonstrate that this is, undoubtedly, the case. Hence, it is rele-
vant to develop the perturbative evolution framework further. We
are currently considering more general background models, with
a relative velocity between the two fluid components. We are also
adding the dissipative coupling associated with mutual friction to
the code. Once these features are incorporated, we will be able to
consider (obviously still at a basic level) the dynamics associated
with the superfluid two-stream instability (Andersson, Comer &
Prix 2003, 2004a) and the possible relation with pulsar glitches (see
Glampedakis & Andersson 2009, for a recent discussion). This is a
very exciting prospect. Looking further ahead, we would like to add

layering to the stellar model by introducing both an elastic crust and
distinct superfluid/normal regions. There are challenges associated
with these aspects, but there is no reason why these developments
should be prohibitively difficult.
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A P P E N D I X A : LO C A L A NA LY S I S

In this Appendix, we carry out a local analysis of the perturba-
tion equations (16)–(19). The aim is to obtain and understand the
superfluid oscillation spectrum and its dependence on parameters
like the proton fraction, the entrainment and the symmetry energy.
Since we are only interested in a qualitative picture, we focus on
the non-stratified N = 1 polytropic model A (see Section 5.1). For
this sequence of models, the ordinary and superfluid perturbation
variables are decoupled. We consider only the ‘superfluid’ pertur-
bations as the dispersion relations for the ordinary modes are well
known, see for example (Unno et al. 1989).

For model A, the superfluid perturbation equations (17) and (19)
can be written

γ −1
ε ∂t D = −α2∇δχp − 2� × D , (A1)

∂t δχp = −∇ · D − f · ∇xp , (A2)

where we have defined

γε ≡ (1 − ε̄)−1 , (A3)

α2 ≡ [ xp(1 − xp)ρ]
1

ρ

∂β

∂xp

∣∣∣∣
ρ

= c2
s (1 + σ )(1 − xp)

[1 − (1 + σ )xp]
, (A4)

and where the speed of sound for an N = 1 polytrope is given by
c2

s = 2Kρ. Now we assume that the perturbation variables behave
as plane waves, i.e., we introduce an ei(ωt+k·r) dependence for all
perturbations into equations (A1) and (A2). Here, ω and k are the
frequency and wave vector, respectively. The characteristic polyno-
mial of the resulting equations is then given by

ω̂4 − (
η̂2γε + 4γ 2

ε �̂2
)
ω̂2 + η̂2γ 3

ε (2�̂ · k̂)2 = 0 , (A5)

where k̂ is the unit wave vector and we have defined the following
dimensionless variables:

�̂ ≡ �√
Gρc

, (A6)

ω̂ ≡ ω√
Gρc

, (A7)

η̂ ≡ αk√
Gρc

. (A8)

The quantities M and R denote the mass and radius of a non-rotating
stellar model, respectively. In the slow-rotation approximation, we
can assume that �̂ � η̂. Equation (A5) then has the following
solutions [up to O(�3)]

|ω̂1| � √
γε η̂ + 2 γ 3/2

ε

η̂
[�̂2 − (�̂ · k̂)2], (A9)

|ω̂2| � γε 2�̂ · k̂ − 4 γ 2
ε

η̂2
[�̂2 − (�̂ · k̂)2]�̂ · k̂

� γε 2�̂ · k̂
{

1 − 2 γε

η̂2
[�̂2 − (�̂ · k̂)2]

}
. (A10)
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Figure A1. This figure shows the inertial mode frequencies estimated from
the dispersion relation (A9). We consider the four values of the symmetry
energy term given in the legend. In equation (A9), the correction term at
O(�3) leads to a dependence on σ which is very similar to the behaviour
seen for the numerically determined mode frequencies, see Fig. 1 in the
main text.

As an estimate, we consider a non-rotating background model
with an N = 1 polytropic EoS. Using the definitions (A4) and (A8),
we have

η̂2 � 48

π

(1 + σ )(1 − xp)

[1 − (1 + σ )xp]

(
R

λ

)2

, (A11)

where λ is the wavelength (related to the wave vector according to
k = 2π/λ). In addition, we have replaced the speed of sound with
its average value for an N = 1 polytrope:

〈
c2
s

〉 = 3

π2

GM

R
. (A12)

If we now assume that the wavelength of the mode is of the same
order as the stellar radius, λ = R, equation (A11) for η̂ becomes

η̂2 � 48

π

(1 + σ )(1 − xp)

[1 − (1 + σ )xp]
. (A13)

To get a qualitative picture, we consider parameter values ε̄ = 2/3
and xp = 0.1 and specify the angle between �̂ and k̂ to be θ = π/4.
In Fig. A1, we show the positive frequency ω̂s of equation (A9)
for different values of σ . The O

(
�3

)
correction term leads to a

behaviour that resembles the global mode results shown in Fig. 1 in
the main text.
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