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Abstract

Gravity has captured the curiosity of mankind for centuries. It is one of the four known fun-

damental forces of nature and the dominant cause for apples falling to the ground, Earth going

around the Sun, and the formation of the large scale structures in the Universe. A revolution

in our understanding of gravity was brought by Isaac Newton who explained how planets move

around the Sun. Another milestone was placed by Albert Einstein who gave us the General The-

ory of Relativity (GR). It expresses gravity as a fundamental property of the spacetime fabric

of the cosmos. The natural application of GR was to construct a model of the entire Universe

to understand its evolution. The most accepted model of the Universe backed by observational

confirmations is the Lambda Cold Dark Matter or the ΛCDM model. It explains the expanding

Universe as well as the formation and evolution of the large scale structure in the Universe.

Although the ΛCDM model is consistent with observations, it is not free from challenges and

disparities. Explanation of the nature of dark energy and dark matter, accelerated expansion of

the Universe, and tensions in estimations of some cosmological parameters (like σ8 or Hubble

tension) have raised questions on the validity of ΛCDM model and a need of its thorough testing

on cosmological scales.

One of the many different ways to test cosmological models is to use the Cosmic Microwave

Background (CMB) radiation in synergy with probes of the large scale structure like galaxies,

galaxy clusters, quasars, etc. In this thesis, we focus on cross-correlation between CMB gravita-

tional lensing potential, estimated from CMB anisotropy maps, and photometric galaxy surveys.

The surveys are prone to several systematic errors which can alter the observed redshift distri-

bution of sources and can cause unphysical variations in their number density in the sky. In this

thesis, we study the impact of various systematic effects on CMB gravitational lensing and pho-

tometric galaxy surveys cross-correlation measurements and estimation from them cosmological

parameters, in particular galaxy bias, amplitude of cross-correlation or σ8 parameter.

The photometric redshifts of galaxies are accompanied by errors that generally broadens the

shape and changes the median redshift of the galaxy distribution. The redshifts of galaxies are

misestimated due to catastrophic errors, which changes the photometric redshift distribution of

galaxies. On the other hand systematics like photometric calibration errors, which arise due to

fluctuations in the limiting magnitude of surveys, lead to unphysical variations in the number

density of galaxies over the survey area. In Chapter 3 we study the impact of these systematic

errors on estimation of cross-correlation between CMB lensing potential measured by the Planck

satellite and photometric galaxy catalogues from the Herschel Extragalactic Legacy Project.

Future galaxy surveys will have larger area coverage in the sky and increase in the magnitude

depth, thus observing significantly larger number of galaxies than their predecessors. These fea-

tures of the upcoming surveys will enable us to perform cross-correlation analyses with galaxies

divided into redshift bins. These tomographic cross-correlation measurements allow us to map

the evolution of cosmological parameters and test the validity of cosmological model at different

i



redshifts. However, tomographic measurements suffer from an additional systematic arising from

the redshift bin mismatch of objects due to photometric redshift errors. This issue is addressed

in Chapter 4. Using a suite of Monte Carlo simulations of the Rubin Observatory Legacy Survey

of Space and Time (LSST) and the Planck lensing map we thoroughly study how the scatter

of objects between redshift bins biases the inferences based on tomographic cross-correlation

analysis and show how to avoid these biases using scattering matrix formalism. We propose and

test new, fast method of estimation the scattering matrix which is well-suited for the analysis of

upcoming large galaxy surveys. We also demonstrate in Chapter 5 the application of scattering

matrix to tomographic analysis of cross-correlation between galaxy catalogue from the Dark En-

ergy Spectroscopic Instrument Legacy Imaging Survey and the Planck gravitational lensing map.

The collection of works in this thesis have shown (i) the mitigation strategies of different

systematics on cross-correlation measurements of CMB lensing with photometric redshift galaxy

catalogues, (ii) that in the case of LSST survey biases in tomographic analysis due to redshift bin

mismatch of objects are of order of one standard deviation for the amplitude of cross-correlation

and σ8 parameter, (iii) and that to avoid biases in tomographic analysis one needs to use the

scattering matrix approach which properly takes into account redshift bin mismatch of objects.
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Streszczenie

(Abstract in Polish)

Grawitacja przyci ↪aga la ciekawość ludzkości od wieków. Jest ona jedn ↪a z czterech znanych

podstawowych si l natury i g lówn ↪a przyczyn ↪a powoduj ↪ac ↪a spadanie jab lek, kr ↪ażenie Ziemi wokó l

S lońca i formowanie si ↪e wielkoskalowej struktury we Wszechświecie. Izaak Newton dokona l re-

wolucji w naszym rozumieniu grawitacji, co umożliwi lo wyjaśnienie ruchu planet wokó l S lońca.

Kolejny kamień milowy zosta l postawiony przez Alberta Einsteina, który przedstawi l Ogóln ↪a

Teori ↪e Wzgl ↪edności (OTW). Wyraża ona grawitacj ↪e jako podstawow ↪a w laściwość czasoprzestrzen-

nej struktury kosmosu. Naturalnym zastosowaniem OTW by lo zbudowanie modelu ca lego

Wszechświata umożliwiaj ↪acego zrozumienie jego ewolucji. Najcz ↪eściej akceptowany model Wszechświata

potwierdzony obserwacjami to model ΛCDM (zimnej ciemnej materii ze sta l ↪a kosmologiczn ↪a,

ang. Lambda Cold Dark Matter). Wyjaśnia on rozszerzaj ↪acy si ↪e Wszechświat jak również for-

mowanie si ↪e i ewolucj ↪e wielkoskalowej struktury Wszechświata. Chociaż model ΛCDM jest

spójny z obserwacjami, nie jest on wolny od pewnych wyzwań i rozbieżności. Potrzeba wy-

jaśnienia natury ciemnej energii i ciemnej materii, przyspieszaj ↪aca ekspansj ↪a Wszechświata i

rozbieżności w oszacowaniach niektórych parametrów kosmologicznych (jak np. rozbieżności

parametrów σ8 czy sta lej Hubble’a) stawiaj ↪a pytania dotycz ↪ace poprawności modelu ΛCDM

i wskazuj ↪a na potrzeb ↪e dok ladnego przetestowania modelu w skalach kosmologicznych.

Jednym z wielu różnych sposobów testowania modelu kosmologicznego jest wykorzystanie

promieniowania mikrofalowego t la w po l ↪aczeniu z obiektami próbkuj ↪acymi wielkoskalow ↪a struk-

tur ↪e takimi jak galaktyki, gromady galaktyk, kwazary itp. W tej rozprawie skupiam si ↪e na

badaniu korelacji wzajemnej mi ↪edzy potencja lem soczewkuj ↪acym promieniowanie t la, oszacow-

anym z map anizotropii promieniowania, a fotometrycznymi przegl ↪adami galaktyk. Przegl ↪ady

galaktyk s ↪a narażone na kilka b l ↪edów systematycznych, które mog ↪a zmienić obserwowany rozk lad

źróde l ze zmierzonymi przesuni ↪eciami ku czerwieni i spowodować niefizyczn ↪a zmienność g ↪estości

rozk ladu galaktyk na niebie. W rozprawie badam wp lyw różnych efektów systematycznych na

pomiary korelacji wzajemnej mi ↪edzy soczewkowaniem grawitacyjnym promieniowania t la a fo-

tometrycznymi przegl ↪adami galaktyk i na oszacowane z pomiarów parametry kosmologiczne, w

szczególności obci ↪ażenie rozk ladu galaktyk wzgl ↪edem ciemnej materii (ang. galaxy bias), ampli-

tud ↪e korelacji wzajemnej lub parametr σ8.

Fotometryczne przesuni ↪ecia ku czerwieni galaktyk s ↪a obarczone b l ↪edami, które w ogólności

poszerzaj ↪a kszta lt i zmieniaj ↪a median ↪e przesuni ↪eć ku czerwieni rozk ladu galaktyk. Przesuni ↪ecia

ku czerwieni galaktyk s ↪a również b l ↪ednie oszacowane z powodu tzw. katastrofalnych b l ↪edów,

które zmieniaj ↪a rozk lad galaktyk z fotometrycznymi przesuni ↪eciami ku czerwieni. Z drugiej

strony, b l ↪edy systematyczne takie jak fotometryczne b l ↪edy kalibracji, które powstaj ↪a wskutek

fluktuacji limitu jasności pozornej przegl ↪adów, prowadz ↪a do niefizycznej zmienności g ↪estości

galaktyk w obszarze przegl ↪adu. W rozdziale 3 badam wp lyw tych b l ↪edów systematycznych na

oszacowanie korelacji wzajemnej mi ↪edzy potencja lem soczewkuj ↪acym promieniowanie t la zmier-

zone przez satelit ↪e Planck a fotometrycznymi katalogami galaktyk z Herschel Extragalactic

Legacy Project.
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Przysz le przegl ↪ady galaktyk b ↪ed ↪a pokrywać wi ↪eksze obszary nieba i b ↪ed ↪a g l ↪ebsze w jasności

pozornej, zatem b ↪ed ↪a również obserwować wi ↪eksz ↪a liczb ↪e galaktyk niż poprzednie przegl ↪ady. Te

w lasności nadchodz ↪acych przegl ↪adów umożliwi ↪a nam analiz ↪e korelacji wzajemnej dla galaktyk

w określonych przedzia lach przesuni ↪eć ku czerwieni. Takie tomograficzne pomiary korelacji wza-

jemnej pozwol ↪a nam odwzorować ewolucj ↪e parametrów kosmologicznych i przetestować poprawność

modelu kosmologicznego przy różnych przesuni ↪eciach ku czerwnieni. Jednakże, tomograficzne

pomiary s ↪a obarczone dodatkowym b l ↪edem systematycznym powstaj ↪acym wskutek b l ↪ednego

przyporz ↪adkowania źróde l do przedzia lów przesuni ↪eć ku czerwieni z powodu b l ↪edów fotome-

trycznie wyznaczonych przesuni ↪eć ku czerwieni. Problem ten jest analizowany w rozdziale 4.

Z pomoc ↪a pakietu symulacji Monte Carlo przegl ↪adu galaktyk Rubin Observatory Legacy Sur-

vey of Space and Time (LSST) i map potencja lu soczewkuj ↪acego dla danych z satelity Planck

badam w nim dok ladnie jak rozproszenie obiektów mi ↪edzy przedzia lami przesuni ↪eć ku czerwieni

wp lywa na wnioskowanie oparte na analizie tomograficznej korelacji wzajemnej i przedstawiam

sposób na unikni ↪ecie tego wp lywu za pomoc ↪a formalizmu macierzy rozpraszania. Proponuj ↪e

tam i przedstawiam testy nowej i szybkiej metody oszacowania macierzy rozpraszania, która

jest szczególnie dobrze dostosowana do analizy nadchodz ↪acych dużych przegl ↪adów galaktyk. W

rozdziale 5 przedstawiam również zastosowanie macierzy rozpraszania do tomograficznej analizy

korelacji wzajemnej katalogu galaktyk z Dark Energy Spectroscopic Instrument Legacy Imaging

Survey i map potencja lu soczewkowkuj ↪acego dla danych z satelity Planck.

Zbiór badań przedstawionych w tej rozprawie pokaza l (i) sposoby na zmniejszenie wp lywu

różnych b l ↪edów systematycznych na pomiary korelacji wzajemnej mi ↪edzy potencja lem soczewku-

j ↪acym promieniowanie mikrofalowe t la a katalogami galaktyk z fotometrycznie zmierzonymi

przesuni ↪eciami ku czerwieni, (ii) że w przypadku przegl ↪adu LSST obci ↪ażenia w analizie tomo-

graficznej, z powodu b l ↪ednego przyporz ↪adkowania obiektów do przedzia lów przesuni ↪eć ku czer-

wieni, s ↪a rz ↪edu wielkości jednego standardowego odchylenia dla amplitudy korelacji wzajemnej

i parametru σ8, (iii) że aby unikn ↪ać obci ↪ażenia w analizie tomograficznej konieczne jest użycie

zaproponowanej metody wykorzystuj ↪acej macierz rozpraszania, która we w laściwy sposób bierze

pod uwag ↪e b l ↪edne przyporz ↪adkowanie obiektów do przedzia lów przesuni ↪eć ku czerwieni.
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Chapter 1

Introduction

1.1 The standard model of cosmology

The standard model of cosmology or the ΛCDM model provides us with a comprehensive frame-

work to understand the structure, origin, and evolution of the Universe. It is a theoretical

framework that combines various branches of physics, such as General Relativity and particle

physics, to describe the fundamental principles governing the Universe on its largest scales. By

studying the properties and behavior of matter, energy, and the fabric of spacetime, the standard

model of cosmology aims to explain the vast array of phenomena observed in our Universe. At

its core, the ΛCDM model is based on the theory of General Relativity, which was developed by

Albert Einstein in the early 20th century. General Relativity describes gravity as the curvature

of spacetime caused by the presence of matter and energy. This theory allows us to understand

the behavior of objects on both small and large scales, from the motion of planets in our solar

system to the expansion of the entire Universe.

In the early 20th century, Edwin Hubble showed that the Universe is not static but actually

expanding (Hubble, 1929). This realization paved the way for the development of the Big Bang

theory, which forms the foundation of the standard model of cosmology. According to the Big

Bang theory, the Universe originated from an incredibly hot and dense state approximately 13.8

billion years ago. It has been expanding ever since, gradually cooling down and giving rise to the

diverse structures we observe today. The standard model of cosmology provides a framework for

understanding the formation of large scale structure, the distribution of matter and energy, and

the overall evolution of the Universe over billions of years. The current state of the expanding

Universe is dominated by a yet-unknown ‘dark energy’ with roughly 68% contribution to the

Universe. There is an invisible form of matter called ‘dark matter’ which makes up about 27%

of the observable Universe and rest is in account of the ‘visible’ baryonic matter. The ΛCDM

model accounts for all these properties of the Universe and is very-well established owing to a

number of observations taken over past few decades.

The ΛCDM model is built upon a vast array of observations collected by analyzing the

emissions from distant objects in the Universe covering the entire electromagnetic spectrum,

detecting particles from various sources and gravitational waved reaching us from distant ob-
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jects. We list below some of the key evidences and observations that have contributed to the

development of the ΛCDM model.

Cosmic Microwave Background (CMB): The discovery of the Cosmic Microwave Background

radiation in 1965 (Penzias & Wilson, 1965) stands as one of the most significant achievements

in modern cosmology. This faint radiation, permeating the entire Universe, is the remnants

of the intense heat and radiation that filled the early Universe, about 380,000 years after the

Big Bang. Precise measurements of the CMB by the Wilkinson Microwave Anisotropy Probe

(WMAP; Bennett et al., 2003) and the Planck satellite (Planck Collaboration et al., 2016a) have

provided critical insights into the age, composition, and evolution of the Universe, confirming

the predictions of the Big Bang theory.

Redshift and the Expanding Universe: In the year 1929, astronomer Edwin Hubble made

a groundbreaking observation that transformed our understanding of the cosmos. By studying

the light emitted by distant galaxies, he noticed a systematic shift towards longer wavelengths,

known as redshift. Hubble interpreted this as evidence that the Universe is expanding, with

distant galaxies moving away from us (Hubble, 1929). This observation paved the way for the

Big Bang theory and became a cornerstone of our current understandings of cosmology.

Large-Scale Structure of the Universe: By mapping the distribution of galaxies on large

scales, astronomers have revealed the intricate cosmic web of filaments, clusters, and voids that

make up the large-scale structure of the Universe. These observations provide insights into the

distribution of matter and energy and have helped to constrain models of cosmic evolution,

including the growth of structures through gravitational interactions. For a theoretical intro-

duction of the large scale structure one may refer to Peebles, 1980, and to Coil, 2013; Bernardeau

et al., 2002 for current updates on the topic.

Supernovae and Dark Energy: The study of supernovae, the explosive deaths of massive

stars, has provided critical evidence for the existence of dark energy. In the late 1990s, ob-

servations of Type Ia supernovae (Riess et al. 1998; Perlmutter et al. 1999) revealed that the

Universe’s expansion is accelerating rather than slowing down, as previously believed. This

unexpected finding led to the proposition of dark energy, a mysterious form of energy that per-

meates the Universe and is driving its accelerated expansion. The nature of dark energy remains

one of the most intriguing and challenging puzzles in modern cosmology.

Cosmic Inflation: Cosmic inflation is a theory that explains the uniformity and flatness of the

Universe on large scales (Linde 1982; Guth 1981; Starobinsky 1979). This theory suggests that

the Universe underwent a period of exponential expansion in its earliest moments, smoothing

out irregularities and setting the stage for the structures we observe today. The prediction of

cosmic inflation aligns with several observations, such as the uniformity of the CMB and the

large-scale structure of the Universe.

Dark Matter and Gravitational Lensing: The existence of an invisible form of matter that

does not emit or interact with light, except gravitationally, was inferred through various obser-
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vations. This ‘dark’ matter has only been confirmed through the gravitational effects on the

motion of stars and galaxies (Rubin et al. 1978; Zwicky 1937; Zwicky 1933), as well as its influ-

ence on the bending of light in a phenomenon known as gravitational lensing (Natarajan et al.

2017; Tyson et al. 1998). These observations provide compelling evidence for the presence of

dark matter and have significantly influenced the standard model of cosmology.

We have given a brief account of the most important milestones that have shaped our under-

standing of the Universe and resulted in the most accepted model of our observable Universe,

the ΛCDM model. We now look with some detail into the Cosmic Microwave Background radi-

ation and how it enables us to test the cosmological models when combined with the large scale

structure.

1.2 Cosmic Microwave Background

The Cosmic Microwave Background (CMB) radiation stands as one of the most remarkable dis-

coveries in the field of cosmology, providing a window into the early Universe and offering crucial

evidence for the Big Bang theory. This faint, pervasive glow of electromagnetic radiation fills the

cosmos, bathing the entire observable Universe in a nearly uniform sea of microwave photons.

The existence of the Cosmic Microwave Background was theoretically predicted as early as the

late 1940s by George Gamow, Ralph Alpher, and Robert Herman (Gamow 1948b; Gamow 1948a;

Alpher and Herman 1948a; Alpher and Herman 1948b). In the early Universe, around 13.8 bil-

lion years ago, the Universe originated in a hot and dense state, popularly known as the Big

Bang. The Universe was filled with fundamental particles including quarks, leptons and bosons,

forming a ”primordial soup”of particles (Weinberg, 1993). As the Universe expanded and cooled,

electrons combined with protons to form neutral hydrogen atoms and the photons gradually lost

energy. This process, known as recombination, occurred about 380,000 years after the Big Bang.

At the time of recombination, the Universe had cooled enough for photons to “decouple” from

matter. Before recombination, photons were continuously scattered by free electrons, preventing

them from traveling freely. However, as electrons combined with protons to form neutral atoms,

the Universe became mostly transparent to photons, allowing them to travel freely without scat-

tering. The CMB radiation we observe today is essentially the “last scattering surface” of these

primordial photons, carrying crucial information about the conditions at that time (Dodelson,

2003). After nearly 13.8 billion years of travelling through an expanding Universe, the CMB has

a significantly redshifted thermal blackbody spectrum at a temperature of 2.73 Kelvin (Fixsen

et al. 1996; Fixsen 2009) corresponding to microwave frequencies with anisotropies in the sky

at O(10−5) level (Smoot et al. 1992a). The statistics of the CMB temperature anisotropies can

be understood as arising from the acoustic oscillations in the primordial soup of photons and

baryons, in which the initial perturbations were purely adiabatic, Gaussian, and had a nearly

scale invariant power spectrum (Padmanabhan 2006; Spergel et al. 2003; Hu and Dodelson 2002).

The epoch of recombination at which the Universe became neutral, was not instantaneous

and there is a finite non-zero width associated with the surface of last scattering. Concerning

present observations, this surface is very thin compare to the distance to the last scattering
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surface. The process of recombination, however, was slow enough that a photon quadrupole

could develop. Thomson scattering of photons with quadrupole distribution will give rise to po-

larization signal from the last scattering surface (Hu and White 1997; Polnarev 1985; Rees 1968).

The CMB was first detected by two radio astronomers, Arno Penzias and Robert Wilson in

1965 (Penzias & Wilson, 1965) at Bell Laboratories in New Jersey while trying to detect radio

signals from space. They identified a persistent background noise that seemed to be coming from

all directions, independent of any known celestial sources. Their discovery garnered significant

attention and won them the Nobel Prize in Physics in 1978. Since its initial discovery, a myriad

of ground-based and space-based instruments have been employed to study the Cosmic Mi-

crowave Background in exquisite detail. These observations have provided exceptional insights

into the composition, geometry, and age of the Universe. The Cosmic Background Explorer

(COBE) satellite (Smoot et al., 1992b) launched in 1989, precisely measured the CMB spec-

trum, revealing tiny temperature fluctuations that serve as the seeds of the cosmic structure we

observe today. Subsequent missions like the Wilkinson Microwave Anisotropy Probe (WMAP;

Bennett et al., 2003) and the Planck satellite (Planck Collaboration et al., 2016a) further refined

these measurements, providing high-resolution maps of the CMB temperature fluctuations and

polarization patterns. The CMB has since become an indispensable piece of evidence supporting

our understanding of the origins and evolution of the Universe.

The precise measurements of the CMB radiations have shaped our current understanding

of the evolution of the Universe. The discovery of the CMB radiation is considered a smoking

gun of the Big Bang theory. The CMB anisotropies detected by WMAP and Planck satellite

missions are crucial in understanding the distribution of matter and energy in the early Universe.

They serve as a blueprint for the seeds of cosmic structures, such as galaxies and galaxy clusters,

that formed later due to gravitational collapse. The variations in temperature provide insight

into the initial conditions that led to the current large-scale structure in the Universe.

The CMB power spectrum, which quantifies the distribution of temperature fluctuations at

different angular scales, is a valuable tool for determining cosmological parameters. By analyz-

ing the CMB data values of various parameters such as the total density of matter and energy in

the Universe, the current rate of expansion of the Universe (quantified through the Hubble con-

stant), the age of the Universe, and the amount of dark matter and dark energy can be derived

with remarkable precision. The matter content of the Universe can be deduced from the acoustic

peaks in the CMB power spectrum; the ratio of the second peak’s amplitude to the first defines

the percentage of baryonic matter, while the third peak determines the dark matter. One of

the most significant findings from CMB observations is the measurement of the average density

of the Universe. Combined with other cosmological data, such as the large-scale distribution

of galaxies, these measurements suggest that the Universe is flat or very close to flat, implying

that it contains precisely the critical density required for it to remain nearly flat over cosmic time.

The uniformity and isotropy of the CMB was a puzzling observation until the inflation the-

ory provided an explanation that the Universe underwent a rapid expansion phase after the Big

Bang (Linde 1982; Guth 1981; Starobinsky 1979). This inflationary period would have left spe-
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cific imprints on the CMB anisotropies. The observations of these patterns, such as the nearly

scale-invariant spectrum of fluctuations, has been a vital tool for testing and refining inflationary

models. While the CMB has provided an extraordinary amount of valuable information, it also

presents some intriguing challenges. For instance, there have been several anomalies observed in

the CMB anisotropy, such as the “Cold Spot” (Szapudi et al. 2015; Cruz et al. 2005) and “Axis of

Evil” (Land & Magueijo, 2005). These anomalies have led to explore possible explanations, such

as statistical fluctuations within cosmic variance, instrumental effects, or more exotic scenarios

that could hint at new physics beyond our current understanding.

In conclusion, the Cosmic Microwave Background radiation is a cornerstone of modern cos-

mology. It confirms the Big Bang theory, offers precise measurements of cosmological parameters,

supports the ΛCDM model, helps determine the age of the Universe, sheds light on the origin of

cosmic structures, and provides a means to test inflationary cosmology. Its discovery and study

have significantly advanced our understanding of the history and evolution of the Universe.

Future CMB missions like South Pole Telescope (SPT) - 3G (Benson et al., 2014), Advanced

Atacama Cosmology Telescope (adv-ACT) (Henderson et al., 2016), Simons Observatory (SO)

(Ade et al., 2019) and CMB-S4 (Abazajian et al. 2019; Abazajian et al. 2016) will give us higher

resolution maps of CMB polarisation than achieved by Planck mission and will aim towards

resolving the anomalies from the CMB measurements.

1.3 Weak Lensing of CMB

The well understood theory of the CMB explains its statistical properties, including the charac-

teristic pattern peaks in the anisotropy power spectra (Scott and Smoot 2006; Challinor 2004).

With improvement in the quality of data, observations can probe smaller angular scales where

various non-linear signals become important. One of the most important small scale effects is

the weak lensing. Weak lensing of the CMB is the deflection of the photons originating from

the last scattering surface by the large-scale structures, such as galaxy clusters, filaments, and

dark matter halos, that lie between us and the CMB photons. The gravitational potential of the

large-scale structures along the line of sight acts as a lens, and it alters the paths of the photons,

leading to distortions in the observed CMB temperature and polarization patterns (Metcalf and

Silk 1997; Seljak 1996; Linder 1990; Cole and Efstathiou 1989). The strength of the lensing

effect depends on the density and distribution of matter along the line of sight.

The typical total deflections suffered by the CMB photons are ∼ 2 arcminutes. The weak

lensing thus, dominates the CMB anisotropy power spectrum at multipoles ℓ≥ 3000. Although,

the magnitude of the deflections are much smaller than the degree-scale primary CMB acoustic

peak, these deflections are correlated over the sky over a comparable scale of 2−3 degrees (Lewis

& Challinor, 2006). Weak lensing broadens the acoustic peak, thus, changing the statistics of

the size distribution and diffusing the size of the under-dense or over-dense regions. In addition

to the percent-level effect on the CMB temperature power-spectrum, weak lensing introduces

non-Gaussian signatures in the CMB and also generates ‘B-mode’ curl-like polarization signal

which may be a source of confusion with any primordial signal from the gravitational waves
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(Kamionkowski et al., 1997).

Even though the weak lensing changes the statistical properties of the CMB, these signa-

tures of the lensed CMB field can be exploited to extract information about the lensing deflection

field. (Hu and Okamoto 2002; Hu 2001; Zaldarriaga and Seljak 1999). The map of the projected

lensing potential can be reconstructed from CMB temperature and polarisation data (Millea

et al. 2021; Darwish et al. 2021; Planck Collaboration et al. 2014b; Omori et al. 2017). The

integrated information of the matter distribution in the Universe, all the way to the surface of

last scattering, is contained in these reconstructed maps of the lensing potential.

Weak lensing of the CMB, both independently and with other cosmological datasets, has

led to stringer constraints on cosmological parameters including the densities of baryonic mat-

ter and the ‘invisible’ dark matter content in the Universe, the sum of neutrino masses and

the dark energy density component in the evolution of Universe (Madhavacheril et al. 2023;

Planck Collaboration et al. 2020b). The combination of CMB weak lensing with various trac-

ers of the large scale structure, which we will discuss in the next section, can provide a vast

amount of information on the evolution of the Universe. While weak lensing of the CMB holds

great promise as a cosmological probe, several challenges remain. Systematic effects, such as

foreground contaminations, instrumental noise, and biases, must be meticulously accounted for

in data analysis. Moreover, the ongoing and upcoming CMB experiments, such as the Simons

Observatory and CMB-S4, are expected to significantly improve the sensitivity and resolution,

offering unprecedented opportunities to study weak lensing in more detail.

1.4 Cross-correlation

The CMB weak lensing is an integrated quantity along the line of sight and holds the surface-

projected information of the matter distribution in the Universe. The map of CMB weak lensing

by itself does not provide direct information on the evolution of the large-scale gravitational po-

tential. However, this information can be obtained by cross-correlating the lensing map of CMB

and tracers of the large scale structure like galaxy density, galaxy clusters, quasars, and radio

sources with known redshifts. Since galaxies reside in dark matter halos (Mo et al., 2010) they

are good tracers of structures causing gravitational lensing of CMB.

Cross-correlation between the CMB weak lensing and the tracers of the large scale structure

can be used to study the distribution and evolution of the dark matter gravitational potential,

study the relation of luminous and dark matter (Han et al. 2019; Bianchini and Reichardt 2018),

determine the amplitude of structure at different redshifts (Peacock and Bilicki 2018; Doux et al.

2018), and measure galaxy groups and cluster masses (Gupta and Reichardt 2021; Raghunathan

et al. 2019; Planck Collaboration et al. 2016b). The cross-correlation approach employed over

redshift slices is a powerful tool to study the dynamical evolution of dark energy from the onset

of cosmic acceleration and to test the validity of the cosmological models as a function of red-

shift. The deflections of CMB photons are sensitive to the distribution of matter in the Universe

and the related gravitational potential which is governed by the theory of General Relativity.
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Cross-correlation measurements are affected by the amplitude and growth of the matter power

spectrum and how modifications are made to General Relativity. Any deviations from the un-

derlying theory of gravity, General Relativity, will reflect directly on CMB lensing and hence, on

cross-correlations. The importance of cross-correlations between CMB lensing convergence and

galaxy positions or galaxy shapes in testing the validity of the ΛCDM model has been firmly

established with many studies performed over the past years (Miyatake et al. 2022; Robertson

et al. 2021; Abbott et al. 2019; Bianchini and Reichardt 2018; Singh et al. 2017; Giannantonio

et al. 2016).

Many cross-correlation studies have been performed over the past with optical catalogues

like Sloan Digital Sky Survey (SDSS) (Singh et al., 2020), Dark Energy Survey (DES) (Omori

et al. 2019a; Omori et al. 2019b), Wide-Field Infrared Survey Explorer (WISE) (Krolewski et al.

2021; Krolewski et al. 2020; Goto et al. 2012), Two Micron All Sky Survey (2MASS) (Bianchini

& Reichardt, 2018) and Subaru Hyper Suprime-Cam (for example, Marques and Bernui 2020;

Namikawa et al. 2019) and with radio catalogues from Low-Frequency Array (LOFAR) (Alonso

et al., 2021). Cross-correlation studies involving CMB lensing and galaxy density maps have

been reported by a number of authors (Darwish et al. 2021; Cao et al. 2020; Aguilar Faúndez

et al. 2019; Giusarma et al. 2018; Schmittfull and Seljak 2018; Pullen et al. 2015; Cawthon et

al. 2015; Kuntz 2015). Several cross-correlation studies have also been reported between CMB

lensing and quasar density maps (Zhang et al. 2021; DiPompeo et al. 2015; Han et al. 2019)

as well as high-redshift sub-millimeter sources from the Herschel Astrophysical Terahertz Large

Area Survey (H-ATLAS) have also been used to perform such studies (Bianchini et al. 2015 and

Bianchini et al. 2016).

1.5 Motivation and thesis overview

Although the standard model of cosmology or the ΛCDM model is very well established by

cosmological observations, it is not free from challenges and disparities. The nature of dark

energy (Λ), accelerated expansion of the Universe, and tensions in cosmological parameters

(like Ωm −σ8 or Hubble tension) among others have raised questions on the validity of ΛCDM

model. One of the fundamental assumptions of ΛCDM is that General Relativity (GR) is the

correct description of gravity. Even though GR has been successfully tested on many occasions,

most of its bounds come from the observations made within our Solar System. Thus, the

assumption that this theory is a good description of gravity at cosmological scales needs detailed

investigations. Studies in this direction have resulted in several alternatives to the ΛCDM model.

These alternatives are divided into two broad categories: Dark Energy models that modify

the stress-energy content of the Universe by adding a component to the dark energy equation

of state, and Modified Gravity theories, including modifications made to the Einstein-Hilbert

action producing deviations from the standard Poisson equation valid in GR. CMB and the

large scale structure probe the clustering and distribution of matter in the Universe. They

provide observational tests for the theory of gravity at cosmological scales and allow to bring

strong constraints on departures from GR. Figure 1.1 presents a schematic overview of testing

cosmological models through cross-correlation measurements.
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Figure 1.1: A schematic view of the cross-correlation analysis

Observations from the galaxy survey experiments like Sloan Digital Sky Survey (SDSS, Gunn

et al. 2006; Strauss et al. 2002), Wide-field Infrared Survey Explorer (WISE, Schlafly et al. 2019;

Wright et al. 2010), Kilo-Degree Survey (KiDS, Heymans et al. 2021; de Jong et al. 2015), Hy-

per Suprime-Cam (HSC, Hikage et al. 2019), Two Micron All Sky Survey (2MASS, Bilicki et al.

2014), and Dark Energy Survey (DES, Abbott et al. 2018) have been the torch-bearer in un-

veiling the shortcomings of the standard model of cosmology, the ΛCDM model. The baton is

now with the upcoming galaxy surveys including the Vera C. Rubin Observatory Legacy Survey

of Space and Time (LSST, Ivezić et al. 2019; LSST Science Collaboration et al. 2009), Euclid

(Laureijs et al., 2011), Nancy Grace Roman Space Telescope (Spergel et al., 2013), Dark Energy

Spectroscopic Instrument (DESI, Dey et al. 2019a), and Spectro-Photometer for the History of

the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx, Doré et al. 2014) to provide

an in-depth understanding of the workings of our Universe.

The cross-correlation analyses between CMB weak lensing and galaxy samples divided into

narrow redshift bins (such as White et al. 2022; Pandey et al. 2022; Chang et al. 2022; Sun

et al. 2022; Krolewski et al. 2021; Hang et al. 2021; Peacock and Bilicki 2018) have identified

differences in the value of cosmological parameters like the σ8, Ωm, or the combined S8 parame-

ter (defined as S8 ≡ σ8
√

Ωm/0.3) within the ΛCDM model. These low-redshift cross-correlation

probes consistently measure a lower value for S8 as compared to the high-redshift CMB-only

measurements from Planck satellite (Planck Collaboration et al., 2020a), resulting in the so-

called S8 tension.

The cross-correlation measurements naturally suffer from similar systematics and errors that

affect the number density and redshift distribution of sources in galaxy and quasar surveys.

Uncertainties such as photometric redshift errors and catastrophic errors affect the redshift dis-

tributions of sources whereas photometric calibration errors bias the number counts of objects
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in the sky. One of the primary goals of this thesis is to robustly test the impact of these error

through Monte Carlo (MC) simulations and demonstrate the mitigation of these biases in data

analysis. The cross-correlation analyses over redshift slices additionally suffers from the scatter

of objects across redshift bins due to photometric redshift errors, which can lead to a biased

estimation of the angular power spectra. The mitigation of the effects of redshift bin mismatch of

objects in a tomographic cross-correlation study is the second major work of this doctoral thesis.

The above-mentioned systematics and errors will bias the cosmological parameters estimated

through cross-correlation measurements. This doctoral thesis attempts to present the specifics

for a number of systematics in the essence of an unbiased cosmological parameter estimates from

the next-generation large scale structure surveys and CMB experiments.

The doctoral thesis is arranged as follows: In Chapter 2, we describe the theoretical angular

power spectra for CMB lensing convergence (lensing convergence is the 2-dimensional Laplacian

of the lensing potential), galaxy clustering and the cross-correlation between the two. In this

chapter, there is also presented the MASTER algorithm that we use throughout the body of work

to extract full-sky angular power spectrum from observations on partial sky coverage. We also

explain briefly the Maximum Likelihood Estimation technique that is used for estimating pa-

rameters from power spectra. Chapter 3 presents the first cross-correlation measurements and

parameters estimated from the Planck CMB lensing potential and photometric redshift galaxy

catalogues from the Herschel Extragalactic Legacy Project. In this chapter we delve into a

detailed study of various systematics that can impact the cross-correlation measurements and

subsequently affect the cosmological inferences.

With focus on tomographic cross-correlation measurements with upcoming datasets in Chap-

ter 4, we study in depth through MC numerical simulations how the leakage of objects across

redshift bins due to photometric redshift errors results in a biased estimation of angular power

spectra in redshift bins. We show that the common methods used in a tomographic analy-

sis to compute the theoretical angular power spectrum with redshift errors are insufficient for

correct estimation of parameters. This may lead to apparent tensions on cosmological param-

eters. Alternatively, we propose using, introduced by Zhang et al., 2010, the scattering matrix

formalism with a new, fast method of the matrix estimation to counter the effects of redshift

scatter of objects. In Chapter 5, we apply the scattering matrix formalism and re-analyse the

cross-correlation study between the Planck CMB lensing potential and galaxy catalogue from

the Dark Energy Spectroscopic Instrument Legacy Imaging Survey Data Release 8 from Hang

et al., 2021. Finally, we summarise all major findings of this doctoral thesis in Chapter 6.
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Chapter 2

Theory and Methodology

2.1 Overview

In this chapter, we describe the theoretical and mathematical requisites used throughout this

doctoral thesis. The computation of the theoretical angular power spectrum is present in sec-

tion 2.2. The estimation of full-sky angular power spectra from partial sky coverage maps using

the MASTER algorithm is detailed in section 2.3. Section 2.4 presents the Maximum Likelihood

Estimation technique we use for the estimation of the cosmological parameters.

2.2 Power Spectrum

The gravitational lensing of the CMB photons by the intervening large scale structure acts as

a remapping of the unlensed temperature field Θ(n̂) in the direction n̂ according to (Lewis &

Challinor, 2006):

Θ̃(n̂) = Θ(n̂+ ∇φ(n̂)) = Θ(n̂)+ ∇
a
φ(n̂)∇aΘ(n̂)+O(φ

2) (2.1)

where Θ̃(n̂) is the lensed temperature anisotropy field and φ(n̂) is the CMB lensing potential

defined as:

φ(n̂) = −2
∫

χ∗

0
dχ

χ∗−χ

χ∗χ
Ψ(χn̂,z(χ)) (2.2)

where χ represents the comoving distance, χ∗ is the comoving distance to the surface of last

scattering at redshift z∗ ≃ 1100. Ψ(χn̂,z(χ)) is the three dimensional gravitational potential at

position χn̂ in photon’s path.

The gravitational lensing by foreground matter distribution produces small coherent distor-

tions in the temperature which can be described by the convergence which is related to the

lensing potential by a the two-dimensional Laplacian:
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κ(n̂) = −1
2

∇
2
φ(n̂) (2.3)

The lensing convergence is related to the line-of-sight matter over-density δ (Bartelmann &

Schneider, 2001):

κ(n̂) =
∫

χ∗

0
dχ

H(χ)

c
W κ

δ (χn̂) (2.4)

where H(χ) is the Hubble parameter at comoving distance χ, c is the speed of light in units of

km s−1 and W κ is the lensing kernel given by

W κ(χ) =
3Ωm

2c2 H2
0 (1 + z)χ

χ∗−χ

χ∗
(2.5)

in which Ωm and H0 are the present-day values of the matter density parameter and Hubble

constant, respectively. Similarly, one can relate galaxy over-density to the line-of-sight average

of the matter over-density as:

g(n̂) =
∫

χ∗

0
dχ

H(χ)

c
W g

δ (χn̂) (2.6)

with W g being the galaxy kernel:

W g(χ) = b(z(χ))
H(χ)

c
dN

dz(χ)
+

3Ωm

2c2 H2
0 (1 + z)χ

∫
χ∗

χ

dχ
′ H(χ ′)

c

(
1− χ

χ ′

)
(α(χ

′)−1)
dN

dz(χ ′)
(2.7)

In the galaxy kernel, dN
dz is the normalized redshift distribution of galaxies, b(z) is the galaxy

linear bias that relates the distribution of luminous tracers of the large-scale structure to the

underlying total distribution of matter (including dark matter). The second term in Eq. 2.7

accounts for the gravitational magnification of the background objects by foreground sources,

and is termed as magnification bias (Turner, 1980). The effect of the magnification bias depends

on the slope of the distribution of the integral counts of sources as a function of flux S, i.e. the

slope α computed from the logN(> S) ∝ −α logS distribution.

With the expressions of the lensing kernel and galaxy kernel, the theoretical angular power

spectrum is computed using the Limber approximation (Limber, 1953)

Cxy
ℓ =

∫
χ∗

0
dχ

W x(χ)W y(χ)

χ2 P
(

k =
ℓ+ 1/2

χ
,z(χ)

)
(2.8)

where {x,y} = {κ,g}, κ ≡convergence and g ≡galaxy over-density and P
(

k = ℓ+1/2
χ

,z(χ)

)
is the

matter power spectrum which is generated using cosmology codes like CAMB1(Lewis et al., 2000).

We compute, using Eq. 2.8, the lensing convergence auto-power spectrum (Cκκ
ℓ ), galaxy auto-

power spectrum (Cgg
ℓ ), and the cross-power spectrum (Cκg

ℓ ) between lensing convergence and

galaxy over-density fields.

1https://camb.info/
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2.3 Extracting full-sky Power Spectra - MASTER

Observations from the extragalactic surveys and CMB experiments are limited to a fraction of

the sky. The Planck CMB lensing potential map covers ∼ 67% of full sky, masking the regions

dominated by emissions from our own galaxy. We need to estimate the full-sky power spectrum

for different fields (galaxy density, quasar density, CMB lensing convergence, etc.) from fluctu-

ations observed from a limited area of the sky. We implement our own full-sky estimator based

on the MASTER algorithm (Hivon et al., 2002) to recover the full-sky power spectrum from the

partial sky observations. Figure 2.1 presents a schematic overview of the extraction procedure

of the angular power spectrum from maps.

Convergence     (n)

Galaxy density g(n)

HEALPix 
anaf ast

MASTER

Maps Pseudo
power spectra

Full-sky
power spectra

Figure 2.1: Schematic for the extraction of full sky-power spectrum from partial maps

The MASTER algorithm is based on the direct spherical harmonic transform of the observed

area of the sky, and takes into account mode coupling and pixelization effects to produce an

unbiased estimate of the full-sky power spectrum. The incomplete sky coverage leads to a

coupling between different spherical harmonic modes and is described by the spherical harmonic

transform of the window function. We use the HEALPix anafast routine to compute pseudo

power spectra C̃ℓ, from the partial sky coverage maps. The full-sky power spectrum Ĉℓ is related

to the pseudo power spectrum

C̃ℓ = ∑
ℓ′

Mℓℓ′B2
ℓ′Ĉℓ′ (2.9)

where Mℓℓ′ is the mode coupling kernel (see Hivon et al., 2002 for explicit expression and com-

putation strategies for the coupling kernel) and Bℓ is the pixel window function to account for

pixelization effects coming from the finite size of the pixels. The coupling kernel tends to be

singular for very small fractions of sky coverage and Eq. 2.9 cannot be inverted directly. To

overcome this singularity problem we bin the pseudo power spectrum and the mode coupling

kernel in multipoles using binning operators. Eq. 2.9 after binning translates to

C̃L = ∑
L′

KLL′ĈL′ (2.10)

where

C̃L′ = ∑
ℓ′

PL′ℓ′C̃ℓ′ (2.11)
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and

KLL′ = ∑
ℓℓ′

PLℓMℓℓ′B2
ℓ′Qℓ′L′ (2.12)

Here, L stands for the multipole bin and PLℓ is the binning operator expressed as:

PLℓ =


1

2π

ℓ(ℓ+1)

ℓ
(L+1)
low −ℓ

(L)
low

, if 2 ≤ ℓ
(L)
low ≤ ℓ≤ ℓ

(L+1)
low

0, otherwise
(2.13)

and QℓL is the reciprocal binning operator:

QℓL =

 2π

ℓ(ℓ+1) , if 2 ≤ ℓ
(L)
low ≤ ℓ≤ ℓ

(L+1)
low

0, otherwise
(2.14)

The final step in the extraction procedure is to subtract the unwanted noise contributions full-

sky power spectrum. We perform Monte-Carlo simulations of the observed noise fields, and

subtract the ensemble average of these simulations from the recovered full-sky power spectrum.

The noise-subtracted full-sky power spectrum then reads

ĈL = ∑
L′

K−1
LL′C̃L′ − N̂L (2.15)

2.4 Maximum Likelihood Estimation

Maximum Likelihood Estimation is a method of estimating parameters given some observed

data, my maximizing the likelihood function. The likelihood function represents the joint prob-

ability space for the observed data given the free parameters of the model. Maximizing the

likelihood function, thus, gives the values of parameters such that the observed data is most

probable for the model under consideration.

In this thesis, we will estimate two parameters, the galaxy linear bias b and the amplitude of

cross-correlation A, from the measurements of the galaxy auto-power spectrum and cross-power

spectrum between CMB lensing and galaxy density. The amplitude of cross-correlation, A is a

phenomenological parameter that acts as a re-scaling of the cross-power spectrum with respect

to the fiducial cross-power spectrum computed for the assumed background cosmology. The am-

plitude parameter can then be used to test the validity of the cosmological model. The galaxy

linear bias, on the other hand, can be used to put constrains on models of structure formation

in the Universe.

The galaxy auto-power spectrum scales as b2, whereas the cross-power spectrum depends on

the product of the parameters b×A and induces a degeneracy in the estimation of parameters.

To break this degeneracy, we estimate parameters from a joint likelihood function including

both galaxy auto-power spectrum and cross-power spectrum. Thus in total, we perform esti-

mations from three likelihood functions corresponding to Cgg
ℓ , Cκg

ℓ and their joint data vector

Cℓ = (Cκg
ℓ ,Cgg

ℓ ). The choice of three likelihood functions helps identify sources of systematics that

may affect the sampling of parameter space by the likelihood function. The likelihood function

13
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has the form

L (Ĉℓ|b,A) =
1√

(2π)Nℓdet(Covℓℓ′)
exp

{
− 1

2
[Ĉℓ−Cℓ(b,A)](Covℓℓ′)

−1[Ĉℓ′ −Cℓ′(b,A)]

}
(2.16)

where Nℓ is the number of data points, the power spectra with and without hat represents

the measured power spectra from data and their corresponding fiducial templates, respectively.

The covariance matrix Covℓℓ′ for the likelihood function corresponding to Cgg
ℓ and Cκg

ℓ can be

computed from the expression of the generalised covariance matrix present in appendix 7.1 by

setting (A,B,C,D) ≡ (g,g,g,g) and (A,B,C,D) ≡ (κ,g,κ,g), respectively. For the joint likelihood

function the covariance matrix is given by

Covℓℓ′ =

[
Covκg,κg

ℓℓ′ Covκg,gg
ℓℓ′

Covκg,gg
ℓℓ′ Covgg,gg

ℓℓ′

]
(2.17)

where the covariance Covκg,κg
ℓℓ′ accounts for the correlation between the CMB convergence and

galaxy density fields, can be computed from Eq. 7.13 by setting (A,B,C,D) ≡ (κ,g,g,g).
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Chapter 3

Cross-correlation between Planck CMB

lensing potential and galaxy catalogues

from HELP

3.1 Overview

In this chapter, we present the first cross-correlation measurements between the photometric

redshift galaxy catalogues from the Herschel Extragalactic Legacy Project (HELP) and CMB

lensing potential measured by the Planck satellite. We extract the full-sky power spectra for

four HELP fields and estimate two parameters, galaxy linear bias b and amplitude of cross-

correlation A using Maximum Likelihood Estimation. This chapter is based on Saraf et al., 2022

published in Monthly Notices of the Royal Astronomical Society.

The chapter is arranged as follows: we describe the CMB lensing and HELP galaxy catalogues

in section 3.2. The methodology to extract the full-sky power spectra from the partial sky

coverage maps is described in section 3.3. We validate our pipeline for power spectra extraction

in section 3.5. The results of cross-correlation measurements from Planck CMB lensing potential

and HELP galaxy catalogues are present in section 3.6. Finally, we discuss various systematics

that may affect the parameters in section 3.7 and summarise our findings in section 3.8.
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3.2 Data

3.2.1 CMB Lensing Data

The CMB lensing data used for the cross-correlation measurement presented in this chapter

comes the 2018 Public Data Release 3 (PDR3)1 made by the Planck collaboration described

in Planck Collaboration et al., 2020b. Planck was the third generation satellite mission of the

European Space Agency dedicated to precise measurements of the CMB anisotropies, aimed at

studying the early Universe and its evolution. Currently the best constraints on cosmological

parameters based on CMB measurements come from Planck observations. Details about the

Planck mission and its performance can be found in Planck Collaboration et al., 2016a and

Planck Collaboration et al., 2014a.

The CMB lensing potential map we use in our study is based on the Planck PDR3 High-

Frequency Instrument maps described in Planck Collaboration et al., 2020c. It uses SMICA fore-

ground cleaned, DX12 CMB maps to reconstruct the lensing potential employing a quadratic

lensing estimator (Hu and Okamoto 2002; Zaldarriaga and Seljak 1999). We use for our baseline

analysis, the lensing convergence map derived from a minimum-variance estimate of the CMB

temperature and polarization data (hereafter, MV map).

The Planck PDR3 provides spherical harmonic coefficients for the lensing convergence map

in HEALPix2 (Górski et al., 2005) format with resolution parameter Nside = 4096. We build

the lensing convergence maps from the spherical harmonic coefficients through the HEALPix

alm2map routine. The smaller angular scales (or higher multipoles) in the lensing convergence

maps are dominated by noise, rendering them impractical for cross-correlation measurements.

Thus, for our analysis we downgrade these maps to a lower resolution parameter Nside = 512,

which effectively reduces the processing time for these maps without compromising the quality

of our results. The data package also provides the noise power spectrum for MV maps computed

from 300 simulations performed by the Planck collaboration as well as binary maps to mask out

the regions of sky not suitable for analysis.

3.2.2 Galaxy Data

The Herschel Extragalactic Legacy Project or HELP3 is an optical to near-infrared galaxy

catalogue with data products derived from 51 premium multiwavelength extragalactic public

data sets (Shirley et al. 2021; Shirley et al. 2019). HELP covers 1270 deg2 in the sky divided

into 23 fields defined by the Herschel SPIRE extragalactic survey fields, including the Herschel

Multi-tiered Extragalactic Survey (HerMES; Oliver et al., 2012) and the Herschel Astrophysical

Terahertz Large Area Survey (H-ATLAS; Eales et al., 2010). The HELP fields have observations

spanning the wavelength range 0.36−4.5 µm with fluxes in the u,g,r, i,z,y,J,H,K,Ks, and IRAC

Ch 1,2,3,4 photometric filters. The g,r, i,z,y fluxes are available for all HELP fields, the K,Ks

1https://pla.esac.esa.int/#cosmology
2https://healpix.jpl.nasa.gov/
3https://herschel.sussex.ac.uk
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band covers ∼ 1130 deg2 while the IRAC Ch bands are available only on < 300 deg2. A detailed

list of different public surveys contributing to the HELP fields and information on the depth

of observations in different photometric bands can be found in appendix A of Shirley et al., 2019.

We filter the available 23 HELP fields based on their physical area and inhomogeneities in

the galaxy density due to different depths of the contributing public surveys. We obtain three

fields suitable for cross-correlation analysis namely, the North Galactic Pole (NGP), the Herschel

Stripe-82 (HS-82) and the South Galactic Pole (SGP). We further observe large scale variations

in the galaxy density within the SGP field. These variations can be attributed to the fact that

the Kilo-Degree Survey (de Jong et al., 2013) only covers approximately one half of the SGP

field. while the Dark Energy Survey (Abbott et al., 2018) covers the other half. The depth

in the g,r, i bands for the KiDS survey is 25.4,25.2,24.2, respectively, whereas the depth in the

same bands for the DES survey is 24.33,24.08,23.44, respectively. The differences in depths

contribute directly to the different mean number of galaxies in the two separate halves of the

SGP field. Thus, to overcome any systematics that may arise from the galaxy density variation,

we divide the SGP field in two parts namely SGP Part-1 and SGP Part-2. We apply additional

selection criteria to increase the purity of the galaxy sample. We filter objects with quality

control flags flag-gaia≤ 2 and stellarity< 0.9. The combination of these two parameters re-

moves star-like objects from our sample and increase the probability for the object to be a galaxy.

Table 3.1: Physical properties of HELP patches. fsky is the fraction of sky covered by patches,
[l,b] are galactic longitude and latitude respectively for the center of the field, Nobj is the number
of objects in each field, and n is the mean number of objects.

Field fsky area [deg2] [l,b] Nobj n [gal pix−1] n [gal str−1] median z
NGP 0.0043 179.14 [51◦,84◦] 1311549 96.908 2.426×107 0.45
HS-82 0.0062 255.16 [130◦,-61◦] 6824474 344.862 8.633×107 0.60
SGP Part-1 0.0020 85.83 [12◦,-68◦] 3151922 481.577 1.206×108 0.71
SGP Part-2 0.0035 145.32 [-82◦,-86◦] 6659404 600.975 1.504×108 0.71

After removing star-like objects, we constrain our sample based on the photometric redshift

errors of the galaxies. The HELP catalogues provide photometric redshifts of objects computed

from the aperture fluxes through the Easy and Accurate Z from Yale code (EAZY; Brammer

et al. 2008). An overview of the HELP photometric redshift estimation pipeline can be found

in Duncan et al., 2018a and Duncan et al., 2018b. In Figure 3.1, we show the distributions for

relative error on photometric redshifts, σz
1+z , for all the four fields considered in our analysis. We

restrict our sample with objects having σz
1+z ≤ 0.15 for NGP and HS-82 fields, but larger value of

σz
1+z ≤ 0.25 for SGP Part-1 and Part-2 fields because the relative error distribution for both parts

of the SGP field has a larger median than NGP or HS-82 fields. With these cuts on redshift

errors, we create the final catalogue of ∼ 18 million objects divided onto NGP, HS-82 and SGP

fields. Table 3.1 provides the physical properties for every field including the fraction of sky area

covered ( fsky), the total area of the field, the galactic longitude and latitude for the center of the

field ([l,b]), the total number of objects Nobj, the mean number of objects n per pixel and per

steradian, and the median redshift of the galaxies in the field.
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Figure 3.1: σz
1+z distributions for HELP patches.

From the final catalogue, we create the galaxy over-density maps at HEALPix resolution

parameter Nside = 512 using the relation

g(n̂) =
n(n̂)−n

n
(3.1)

where n(n̂) is the number of objects at angular position n̂ and n is the mean number of objects

per pixel. In Figure 3.2, we show the convergence and galaxy over-density maps for the part of

the sky common to both Planck lensing convergence and galaxy density fields. We have filtered

out multipoles ℓ≥ 400 from these maps for illustrative purpose, to show the large-scale fluctu-

ations present in the field. We can evidently conclude from Figure 3.2 that the galaxy-density

and convergence fields are homogeneous. We also show in Figure 3.3, the distribution of g(n̂)
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for the four fields and find that the over-density distribution can be very well approximated by

a Gaussian function. This, in turn, confirms that the galaxy density fields have a homogeneous

distribution of objects with mean density of objects as quoted in Table 3.1.

Few key points about the cross-correlation analysis performed in this chapter are:

• The number of density of objects in our sample is approximately two orders of magnitude

larger than the previous analyses of far-infrared Herschel datasets performed, for example

in Bianchini et al., 2016 and Bianchini et al., 2015.

• We use the full lensing convergence map (which covers ∼ 67% of the sky) in our analysis,

instead of the common area map with the galaxy density fields. In Figure 3.2 we have

shown the common area shared between the convergence and galaxy density fields only as

an illustration.

-0.468 0.468

NGP

-0.468 0.468

HS-82

-0.468 0.468

SGP Part-1

-0.468 0.468

SGP Part-2
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NGP

-0.509 0.509

HS-82

-0.509 0.509

SGP Part-1

-0.509 0.509

SGP Part-2

Figure 3.2: Convergence maps (upper row) and galaxy over-density maps (bottom row) of NGP,
HS-82, SGP Part-1 and SGP Part-2 fields. Multipoles ℓ ≥ 400 have been filtered out from all
maps. The grid spacing is 3◦ in longitude and 5◦ in latitude.

The HELP catalogue also provides posteriors of estimated redshifts for every object based

on the EAZY code. We stack these posteriors together to build the redshift galaxy distributions

for every HELP field. The photometric redshift errors translates to the redshift distributions via

these posteriors (Budavári et al., 2003). We show the comparison of redshift distributions for

HELP fields and CMB lensing kernel in Figure 3.4. The lensing kernel and redshift distributions

are normalised to unit maximum for illustrative comparison. The redshift galaxy distribution is

then used to compute the theoretical power spectrum using Eq. (2.8). We estimate the slope of
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Figure 3.3: The distribution of over-density g(n̂) for the four galaxy fields

the distribution of the integral counts of sources for the four HELP fields to quantify the impact

of magnification bias in the galaxy kernel, and find that α = 1 for all the four fields.
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Figure 3.4: CMB lensing kernel W κ compared with redshift distributions for all galaxy patches.
Both lensing kernel and redshift distributions are normalised to the unit maximum.

3.3 Full-sky power spectra

From the galaxy density and lensing convergence maps prepared in section 3.2, we compute

different angular power spectra for all the four HELP field namely, the lensing convergence

auto-power spectrum (Cκκ
ℓ ), the galaxy auto-power spectrum (Cgg

ℓ ) and the cross-power spectrum

between CMB lensing and galaxy density (Cκg
ℓ ). We use our estimator described in section 2.3 to

extract the full-sky power spectra Ĉxy
ℓ , where {x,y} = {κ,g}. To subtract the noise contribution

from power spectra, we perform Monte-Carlo simulations of the lensing convergence and galaxy

noise fields, and subtract the ensemble average of these simulations from the recovered full-sky

power spectra.. Since the origin of noise in the CMB convergence and galaxy density fields

are uncorrelated, we take the noise associated with the cross-power spectrum, Nκg
ℓ , to be zero.

We estimate the full-sky power spectra using the MASTER algorithm in the multipole range
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0 ≤ ℓ≤ 1200, however, the performance of the mode-coupling kernel at the boundaries is noisy

and we restrict our analysis to the multipole range 100 ≤ ℓ≤ 800 divided into 7 linear multipole

bins with binwidth ∆ℓ = 100.

3.4 Errors on Power Spectrum

The error on the power spectrum, in analyses based on the common sky area coverage between

CMB lensing and galaxy density fields, can be computed from the diagonal of the covariance

matrix given by

Covxy
LL′ =

1
(2ℓL′ + 1)∆ℓ fsky

[
Cxy

L Cxy
L′ +

√
Cxx

L Cxx
L′ C

yy
L Cyy

L′

]
(3.2)

where {x,y} = {κ,g}, ∆ℓ is the multipole binwidth, and fsky is the fraction of sky common be-

tween x and y.

In our analysis, we use maps with different fraction of sky coverage; ∼ 67% for convergence

and < 1% for HELP fields. Hence, we generalise the expression for covariance matrix from Eq.

(3.2) to implement different sky area coverage in the computation of power spectrum errors.

The generalised covariance matrix then reads

CovAB,CD
LL′ =

1
(2ℓL′ + 1)∆ℓ f AB

sky f CD
sky

[
f AC,BD
sky

√
CAC

L CAC
L′ CBD

L CBD
L′ + f AD,BC

sky

√
CAD

L CAD
L′ CBC

L CBC
L′

]
(3.3)

where {A,B,C,D} = {κ,g}, f AB
sky is the fraction of sky common to fields A and B. f AC,BD is the

composite quantity that acts as a weight when taking into account different observed sky areas

for different fields. We evaluate f AC,BD from the mode coupling kernel computed during the

extraction of power spectra from the MASTER algorithm. A detailed derivation of the generalized

covariance matrix can be found in Appendix 7.1.

3.5 Pipeline validation

In section 3.3, we described the methodology implemented to compute the full-sky power spectra

for the convergence and galaxy density fields using the MASTER algorithm. Before proceeding to

the estimation of parameters from the power spectra, it is vital to check the performance of our

full-sky power spectrum estimator. To validate our numerical algorithm and ensure an unbiased

estimation of the full-sky power spectra, we simulate 500 correlated maps of the Planck CMB

lensing convergence and galaxy over-density fields with statistical properties consistent with

HELP catalogues. We follow the procedure of Kamionkowski et al., 1997 and introduce a known

degree of correlation using the relation

κℓm = α1(Cκκ
ℓ )1/2;

gℓm = α1
Cκg
ℓ

(Cκκ
ℓ )1/2 + α2

[
Cgg
ℓ −

(Cκg
ℓ )2

Cκκ
ℓ

]1/2 (3.4)
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where α1 and α2 are two complex random numbers drawn from a Gaussian distribution with

unit variance for each ℓ and m > 0, while for m = 0, α1 and α2 are real random numbers. Cℓ’s

are the fiducial power spectra through which correlations are induced between convergence and

galaxy density fields (see chapter 2 for details on the fiducial power spectra). These correlated

spherical harmonic coefficients generate maps with only signal and we add noise onto these signal

only simulations.

To the simulated convergence maps, we add noise using the minimum variance noise power

spectrum Nκκ
ℓ , provided in the Planck PDR3 data package. We add noise to galaxy over-density

maps by generating a number count map in which each pixel has the value drawn from a Poisson

distribution with mean

λ (n̂) = n(1 + g(n̂)) (3.5)

where n is the observed mean number of sources per pixel for HELP fields and g(n̂) is the

corresponding signal only simulated galaxy map generated using Eq. (3.4). The final galaxy

over-density map suitable for pipeline validation is build from the number count map using Eq.

(3.1). The noise simulated by the Poisson sampling method has statistical properties consistent

with observations. The galaxy over-density maps, simulated with the procedure described above,

often leads to some pixels where g <−1. Then the Poisson sampling for these pixels by Eq. (3.5)

is not possible. We reject those simulations in which pixel value g <−1 on the area covered by

the HELP fields.

With 500 simulated maps of the Planck CMB lensing convergence and HELP galaxy fields,

we compute the mean power spectrum as

Cxy
L ≡ ⟨Ĉxy

L ⟩ =
1
N

N

∑
i=1

Ĉxy,i
L (3.6)

where Ĉxy,i
L represents the ith simulated power spectrum estimate and N is the number of simu-

lations. The error associated with the mean power spectrum is computed from the square root

of the diagonal of the covariance matrix given by

Covxy
LL′ =

1
N −1

N

∑
i=1

(Ĉxy,i
L −Cxy

L )(Ĉxy,i
L′ −Cxy

L′ ) (3.7)

In Figure 3.5, we show the mean power spectra, Cκκ

L ,Cgg
L , and Cκg

L from 500 simulations of

the HS-82 field, computed from our full-sky power spectrum estimator based on the MASTER

algorithm. The upper panel shows the mean power spectrum estimate in blue data points with

red solid curve representing the theoretical power spectrum used for simulations. The bottom

panel presents the relative differences between the mean power spectrum and theoretical power

spectrum. The power spectra are recovered well within 1σ errors and we do not observe any

hints of systematic offsets that can lead to an unbiased estimation of parameters.
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Figure 3.5: Top : Average power spectra reconstructed for 500 simulations of HS-82 field. The
red line represents the theoretical power spectrum used for simulations. Bottom: Error estimated
for the reconstructed simulated average power spectra relative to the theoretical power spectrum.
Left to Right : CMB lensing convergence power spectrum, galaxy auto-power spectrum, and
cross-power spectrum

3.6 Results for Planck X HELP

We described in section 3.3 the procedure to extract full-sky power spectrum from the conver-

gence and galaxy over-density maps. In section 3.5, we explored the performance of our full-sky

estimator through simulations of correlated CMB lensing convergence and galaxy over-density

maps. In this section, we present the results for the first cross-correlation measurements between

Planck CMB lensing convergence and HELP galaxy catalogues.

3.6.1 Noise correlation
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Figure 3.6: Mean correlation between galaxy shot noise obtained from jackknifing approach and
CMB lensing convergence map. No significant signal is detected for any patch.

In section 3.3, we argued that the noise associated with the cross-power spectrum, Nκg
ℓ will
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be zero. Here we test this hypothesis with observational data. We estimate the galaxy shot noise

by jackknifing approach (Ando et al. 2018; Bianchini and Reichardt 2018) and cross-correlate

it with Planck CMB convergence map. Under the jackknifing approach, we randomly split the

galaxy catalogue into two halves and compute independent over-density maps (δ 1
g and δ 2

g ) from

these halves. The combination (δ 1
g +δ 2

g )/2 then contains both signal and noise, while (δ 1
g −δ 2

g )/2

gives the noise contribution. We repeat the jackknifing procedure 500 times and show the mean

correlation between the difference map (δ 1
g −δ 2

g )/2 for the four HELP fields and the true Planck

CMB convergence map in Figure 3.6. The error bars are the square root of the diagonal of

the covariance matrix built from 500 independent splits of the galaxy catalogues. The mean

noise power spectrum Nκg
ℓ is consistent with zero correlation for all four HELP fields, having

χ2/ν = 0.083,0.537,0.429 and 0.283 for ν = 7 degrees of freedom, and no correlation probability

of 0.99,0.81,0.88 and 0.96 for NGP, HS-82, SGP Part-1 and SGP Part-2, respectively.

3.6.2 Power spectra
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Figure 3.7: Galaxy auto-power spectra (Top) and cross-power spectra (Bottom) for HELP fields.
The blue circles represent the measurements of cross-correlation signal using MV map. The red
solid line is the theoretical power spectrum computed using the best-fit values obtained from
likelihood analysis using MV map.

The noise subtracted galaxy auto-power spectra and cross-power spectra for all four HELP

fields are shown in top and bottom panels of Figure 3.7, respectively. The error bars on the

power spectra are computed from the square root of the diagonal of the analytical covariance

matrix following Eq. (3.3), using the best fit values of galaxy linear bias b and amplitude of

cross-correlation A (the estimation of parameters is discussed in section 3.6.3).

We compute the probability of rejecting the null-hypothesis, that there is no correlation

between the HELP galaxy fields and Planck CMB lensing convergence, by using the relation

χ
2
null = Ĉκg

L (Covκg
LL′)

−1Ĉκg
L′ (3.8)
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Table 3.2: Result of no correlation hypothesis rejection for HELP patches using MV convergence
map. ν = 7 is the number of degrees of freedom.

Patch χ2
null/ν p-value

NGP 13.4/7 6.32×10−2

HS-82 41.5/7 6.57×10−7

SGP Part 1 16.9/7 1.80×10−2

SGP Part 2 16.4/7 2.16×10−2

The reduced chi square values and associated p−values of null hypothesis rejection for cor-

relations between the four HELP fields with MV convergence map are quoted in Table 3.2.

Although the χ2
null value for NGP field is poor, we detect significant cross-correlation signal from

all HELP fields.

3.6.3 Parameters

We estimate redshift dependent galaxy linear bias, b and amplitude of cross-correlation A from

our analysis using Maximum Likelihood Estimation technique (section 2.4). The amplitude of

cross-correlation is expected to obtain a value of unity within the standard ΛCDM model. We

account for the redshift dependence in the galaxy linear bias through a simple assumption

b(z) =
b0

D(z)
(3.9)

where b0 is the galaxy linear bias parameter and D(z) is the growth factor computed through

the relation

D(z) = exp
{
−

z∫
0

[Ωm(z′)]γ

1 + z′
dz′
}

(3.10)

where Ωm(z) is the value of matter density parameter at redshift z and γ = 0.55 is the growth

index for general relativity (Linder, 2005).

The form of redshift dependence assumed for the galaxy linear bias (Eq. 3.9) is consistent

with other more common relation (Solarz et al. 2015; Moscardini et al. 1998; Fry 1996) given

by:

b(z) = 1 +
b0 −1
D(z)

(3.11)

We employ the publicly available EMCEE (Foreman-Mackey et al., 2013) package to ef-

fectively sample the parameter space, and estimate galaxy linear bias parameter b0 and cross-

correlation amplitude A. We use flat priors for the parameters with b0 ∈ [0,10] and A ∈ [−5,5].

The other cosmological parameters entering the likelihood estimation through theoretical power

spectrum templates are set to their constant values for the fiducial background cosmology de-

scribed in Planck Collaboration et al., 2020a (i.e. the flat ΛCDM cosmology with the best-fit

Planck + WP + highL + lensing parameters, where WP stands for the WMAP polarisation

data at low multipoles, highL is the high resolution CMB data from Atacama Cosmology Tele-

scope (ACT) and South Pole Telescope (SPT), and lensing refers to the inclusion of Planck

CMB ensing data in the parameter likelihood).
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The covariance matrix entering the likelihood function is evaluated using Eq. (3.3). However,

from Figure 3.8, we note that the covariance matrix is dominantly diagonal and hence, we use

only the diagonal terms in likelihood estimation. We significantly reduce the computation time

for sampling the parameter space with minor loss on the accuracy of estimated parameters by

implementing the diagonal approximation on the covariance matrix.

C g
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Figure 3.8: Correlation matrices constructed from the covariance matrix mentioned in Eq. (3.7)
for HS-82 field. The correlation matrix is dominantly diagonal.

Table 3.3: Galaxy linear bias parameter and cross-correlation amplitude for HELP patches with
MV lensing potential map using both separate and joint likelihood functions.

Patch gg κg κg,gg χ2/ν p-value
b0 A b0 A

NGP 0.89+0.01
−0.01 0.97+0.42

−0.26 0.61+0.32
−0.30 0.89+0.01

−0.01 0.73+0.24
−0.24 6.5/5 0.262

HS-82 0.89+0.01
−0.01 1.08+0.45

−0.27 0.71+0.28
−0.25 0.89+0.01

−0.01 0.79+0.14
−0.14 8.0/5 0.155

SGP Part-1 1.02+0.02
−0.02 0.45+0.20

−0.13 2.16+0.89
−0.71 1.02+0.02

−0.02 0.80+0.23
−0.23 1.4/5 0.919

SGP Part-2 0.70+0.01
−0.01 0.26+0.14

−0.10 1.97+1.15
−0.72 0.70+0.01

−0.01 0.67+0.18
−0.18 1.3/5 0.938

The best-fit values of the parameters estimated for our baseline analysis with MV lensing

map are presented in Table 3.3. The errors on the parameters are computed as the 16th and

84th percentiles of the marginalised posterior distribution of the parameters. We also report the

reduced chi-square values and p−values to give an idea for the goodness of fit of the theoreti-

cal power spectrum to observed data. We find agreement between the expected and estimated

values of the cross-correlation amplitude within ∼ 1σ for NGP and SGP Part-1, within ∼ 1.5σ

for HS-82 and within ∼ 2σ for SGP Part-2. In Figure 3.9, we show the marginalised posterior

distribution for parameters b0 and A as well as the 2−dimensional posterior distribution in the

(b0,A)-plane for cross-correlation of the four HELP fields. The red lines mark the expected value

of A = 1 within the ΛCDM model.
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Figure 3.9: Posteriors of parameter obtained from Maximum Likelihood Estimation for all HELP
patches with 68% and 95% confidence contours shown in darker and lighter shades, respectively.
The three vertical lines are the median value of posterior and ±1σ errors. The red line represents
the value of A = 1 for standard ΛCDM model.

The galaxy linear bias parameter, on the other hand, is constrained entirely by the galaxy

auto-power spectrum. This is owing to the fact that b0 prefers the same value with joint-analysis

of power spectra as the one with only galaxy auto-power spectrum. We observe significant

variation in the value of b0 parameter ranging from 0.70 for SGP Part-2 to 1.02 for SGP Part-1

field with less than 2% errors. The variation in the values of galaxy linear bias parameter can be

related to the fact that with different HELP fields are composed of observations from different

surveys. A detailed list of surveys and the fraction of objects they contribute to the HELP fields

is present in Appendix 7.2. As mentioned in section 3.2.2, SGP Part-1 has coverage from KiDS

survey while SGP Part-2 is covered by DES survey. This can give rise to the different values of

b0 between the two halves of the SGP field. On the other hand, the NGP and HS-82 fields have

a large fraction of objects coming from the PanSTARRS survey, which can result in selection of

similar objects and possibly explain the same value of b0 = 0.79 from NGP and HS-82 fields.

3.7 Systematics

We find mild disparities in the amplitude of cross correlation when HS-82 and SGP Part-2 fields

are cross-correlated with Planck MV lensing potential map. In this section, we explore other

systematics that can contribute to a lower than expected value of cross-correlation amplitude.

3.7.1 CIB contamination

The Cosmic Infrared Background (CIB) emission is often considered as a potential source of bias

when using CMB lensing data products for estimating cosmological parameters (Cao et al. 2020;

van Engelen et al. 2014). The residuals of CIB emission can leak into the reconstruction of the

CMB lensing potential through CMB temperature maps. The galaxies will, then, correlate with

the residuals of CIB emission and may produce smaller values of the amplitude. Figure 3.10

taken from Planck Collaboration et al., 2020b shows the CIB-induced bias in the auto-power

spectrum of the MV CMB lensing map (in orange line). As a result of using the SMICA CMB

maps for lensing potential reconstruction in the Planck PDR3, the CIB-induced biases are at

sub-percent level for the multipole range used in our analysis. Nevertheless, these CIB biases can
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Figure 3.10: Estimates of the expected CIB-induced biases (as a fraction of the lensing potential
power spectrum) taken from Planck Collaboration et al., 2020b. The orange line shows the
relative CIB contribution for the MV CMB lensing maps.

be larger for the cross-power spectrum. Although, we did not estimate the contribution of CIB

to the cross-correlation in this study, it is worthwhile to note that the redshift range of HELP

galaxies is low compared to the redshift of CIB sources. Thus, we do not expect significant

cross-correlation between HELP galaxies and sources of CIB emission.

3.7.2 Magnification Bias
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Figure 3.11: Effect of α on the estimated values of cross-correlation amplitude A and galaxy
linear bias parameter b0 for SGP Part-2. There is no significant effect on A.

The second term in Eq. (2.7) accounts for the modification of the observed density of back-

ground sources due to weak gravitational lensing by foreground objects. We measured the value

of α = 1 for all HELP patches used in our study by fitting a straight line to logN(> S) distri-

bution. In this section we estimate the impact of α on parameters by looking at the change
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in b0 and A for SGP Part-2 field, with α = 2 and α = 3. The 2-dimensional posteriors in the

b0 −A plane for α = 1,2,3 are shown in Figure 3.11. We obtain a value of b0 = 0.67±0.01 and

A = 0.67±0.18 for α = 2 and b0 = 0.64±0.01 and A = 0.67±0.18 for α = 3. The value of galaxy

linear bias parameter b0 decreases with higher values of α, but the amplitude of cross-correlation

shows no effect. Other fields also show similar trends in the parameters with different α. We do

not see any significant change in the cross-correlation amplitude because the cross-correlation

with lensing convergence is weak for relatively shallow surveys like HELP. Hence, changes in the

cross-power spectrum with different values of α are within errors on the data.

3.7.3 Median redshift

The median redshift of a distribution can be misestimated due to photometric redshift errors.

We have imposed restrictions on the distribution of σz
1+z to be ≤ 0.15 for NGP and HS-82, and

≤ 0.25 for SGP Part-1 and Part-2. These errors can shift the median values of the distributions

(present in Table 3.1) from their true values. In this section, we examine the robustness of

our results as presented in Table 3.3 against the misestimation of the median redshift of the

distributions. For this test, we model the observed redshift distributions from the HELP fields

by a function of the form

dN
dz

= a0za1exp

[
−
(

z
a2

)a3
]

(3.12)

where a0,a1,a2,a3 are free parameters of the function. The parameter a2 controls the median

redshift of the distribution. The parameter a2 is not entirely the median redshift but acts as a

proxy when shifting the median redshift of the distribution. The best-fit values of parameters

a0,a1,a2,a3 is given in Table 3.4.

Table 3.4: Best fit values of a0,a1,a2,a3 for the modelling function given by Eq. (3.12).

Patch a0 a1 a2 a3

NGP 5.843 1.007 0.602 3.014
HS-82 8.419 1.756 0.579 1.733

SGP Part-1 15.556 1.925 0.415 1.320
SGP Part-2 9.553 1.776 0.552 1.659

Using the functional form of Eq. (3.12), we estimate the minimum amount of shifts required

in the median redshift, so that the amplitude of cross-correlation becomes fully consistent with

its expectations. We find that for all the HELP fields we should shift the median value of red-

shift to lower values to account for the observed tension in the amplitude. We need ∼ 10% shift

for NGP and SGP Part-1, ∼ 20% for HS-82 and ∼ 25% for SGP Part-2 to alleviate the tension

on amplitude of cross-correlation A. Figure 3.12 compares the marginalised and 2-dimensional

posterior distributions, with and without shifting the median redshift by ∼ 25%, for SGP Part-2

field. The negative sign represents that the shift is towards lower values.

We also perform numerical simulations to get an idea of whether such large shifts in the

median redshift is possible with the observed photometric redshift errors of the order of σz
1+z ∼ 0.2.

We assume true redshift distribution for the HELP fields having the functional form given by

Eq. (3.12). For every HELP field, we generate true redshifts for objects drawn from the assumed
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Figure 3.12: The parameters for SGP Part-2 computed with −25% shift in the median redshift
of the distribution and without any shift. We show 68% and 95% contours with darker and
lighter shaded regions, respectively. The red line represent the expected value A = 1.

true redshift distribution. We then redistribute the redshifts, assuming a Gaussian distribution

centered at the true redshift and width corresponding to σz
1+z ∼ 0.2. We repeat this exercise of

redistribution of redshifts and generate a few hundred mock catalogues. Finally, we compare

the average median redshift from the mock catalogues with the median redshift of the true

redshift distribution. We find that the median redshift is shifted between 5−7% for all HELP

fields after taking into account the photometric redshift errors. We conclude that the shifts

required to bring the cross-correlation amplitude in unison with unity are not plausible given

the photometric redshift uncertainties of the order of σz
1+z ∼ 0.2.

3.7.4 Photometric calibration errors

HELP catalogues are made from combination of various public surveys having different limiting

magnitudes. The HELP catalogues are, thus, prone to photometric calibration errors which

arise due to the variation in the limiting magnitude of surveys across sky. The photometric cal-

ibration error can cause the unphysical variations in the number density of objects, which can

bias the galaxy auto-power spectrum and affect the estimation of parameters. Although, photo-

metric calibration errors are significant at large angular scales, it may also have non-negligible

contribution at small scales when combining different surveys together as in the case of HELP

catalogues. Hence, mitigation of calibration errors is one of the most important and challenging

aspect for cross-correlation analysis involving combination of different surveys.

To study the impact of the calibration errors on galaxy linear bias parameter and cross-

correlation amplitude, we resort to numerical simulations and follow the procedure described

in Huterer et al., 2013. The true number counts of objects in a given direction n̂ of the sky is

transformed by the calibration field c(n̂) following the relation:
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Nobs(n̂) = [1 + c(n̂)]Ntrue(n̂) (3.13)

in which

c(n̂) = ln(10)s(z)δm(n̂) (3.14)

where ln() represents natural logarithm, δm(n̂) is the variation in the limiting magnitude in a

given waveband along the direction n̂, and s(z) is the faint end slope of the luminosity function

given by

s(z) ≡ d log10 N(z,> m)

dm

∣∣∣
mmax

(3.15)

where mmax is the maximal apparent magnitude for a given waveband.
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Figure 3.13: Top: Faint end slope of the luminosity function and bottom: calibration error field
c(n̂) for HS-82 in g (left) and r (right) bands. The grey shaded area in the top panel marks the
1σ interval around the best-fit value of slope.
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The correction for photometric calibration errors require a precise estimation of the calibra-

tion field c(n̂). We only have a tentative estimate for the c(n̂) field from observational data

which may not completely reflect the impact of calibration errors. Thus, we quantify the impact

of this systematic using only simulations. We notice from Table 7.1 that g and r bands have the

maximum coverage in all HELP fields and hence, we present the influence of calibration errors

using simulation of HS-82 field for g and r bands.

The faint end slope of the luminosity function and the corresponding calibration error field

maps at HEALPix resolution parameter Nside = 128 estimated from g and r bands for the HS-82

field are shown in the top and bottom panels of Figure 3.13, respectively. With an estimate of the

calibration field, we simulate galaxy number count maps for HS-82 field induced with calibration

error by using Eq. (3.13). Finally, we estimate the parameters from these simulations before and

after correcting for the calibration errors, and show the comparison of estimated parameters for

g and r bands in Figure 3.14. The red lines mark the true values of parameters used during

simulations. Although the galaxy linear bias parameter shifts between 1− 2σ , the amplitude

of cross-correlation remains unchanged. We observe similar behaviour in other HELP fields as

well, suggesting that photometric calibration errors may not be significant contributor to the

disparity observed in the amplitude.
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Figure 3.14: Comparison of estimated parameters with and without correction for the calibration
error for g and r bands using simulations corresponding to HS-82 field. We show 68% and 95%
contours with darker and lighter shaded regions, respectively. The red lines represent the true
values of b0 and A parameters used in simulations, i.e. b0 = 2 and A = 1.

3.7.5 Catastrophic photometric redshift errors

The catastrophic photometric redshift errors causes the redshifts of galaxies in a photometric

survey to be misestimated by a significant amount. The reasons for catastrophic redshift errors

are not fully understood, but Muir and Huterer, 2016 relates the outcomes and occurrence of

catastrophic errors to the number of photometric filters and their relation to the spectral features

that carry principal information about the redshift. The percentage of catastrophic redshift error

rates is most likely between 1−10% for current surveys (see Fang et al. 2022; Jouvel et al. 2017;
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Figure 3.15: Effect of catastrophic errors on the inferred values of cross-correlation amplitude
A and galaxy linear bias parameter b0 for SGP Part-2. We show 68% and 95% contours with
darker and lighter shaded regions, respectively, for x = 0 (no catastrophic errors), x = 0.01 and
x = 0.1 catastrophic error rate. The red lines represent the true values of b0 and A used in
simulations (b0 = 2 and A = 1).

Muir and Huterer 2016). We study the impact of the catastrophic redshift errors on HELP

fields by assigning new random redshifts for fraction x of the galaxies from the redshift range

z ∈ [0.01,3.0]. We recompute the redshift distribution with the new assignment of redshifts and

simulate the galaxy over-density maps. Figure 3.15 show the 2−dimensional contours in the

b0 −A plane for simulations of SGP Part-2 field with x = 0.01 and 0.1. The parameters are

estimated from the simulated over-density maps, with the theoretical power spectra computed

from redshift distribution without accounting for the catastrophic errors. Figure 3.15 thus

represents the parameters contours that one will estimate without correcting for the catastrophic

errors. We do not find any systematic effect for the amplitude of cross-correlation for any of the

HELP fields.

3.7.6 Using different CMB lensing potential maps

In addition to the systematics affecting in the galaxy density maps, we also study the impact

of using different CMB lensing convergence maps provided in Planck PDR3 datasets (Planck

Collaboration et al., 2020b). We use the lensing convergence map derived from the temperature-

only Sunyaev-Zeldovich deprojected map (hereafter, SZ-deproj map) and the lensing convergence

map reconstructed from only the CMB temperature measurements (TT map). In Table 3.5, we

present the parameters b0 and A, estimated from the MV, SZ-deproj and TT maps. Figure

3.16 show cross-power spectra for cross-correlation of HELP fields with MV, SZ-deproj and TT

maps with best-fit theoretical power spectra. A re-estimation of parameters b0 and A with the

SZ-deproj and TT lensing maps produces larger amplitudes in agreement with expectations

within 1σ for all HELP fields except NGP. The disparities in the value of the cross-correlation

amplitude between MV and SZ-deproj or TT lensing maps can be due to the differences in these
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maps. In particular, MV lensing map include CMB polarization measurements along with CMB

temperature measurements to reconstruct the lensing potential map, whereas the SZ-deproj and

TT maps are reconstructed from the CMB temperature measurements only, with additional

subtraction of Sunyaev-Zeldovich signal in the case of SZ-deproj map.

Table 3.5: Galaxy linear bias and cross-correlation amplitude from Maximum Likelihood Estima-
tion from HELP patches using joint likelihood functions for MV, SZ-deproj and TT convergence
maps.

Patch MV SZ-deproj TT

b A χ2/ν b A χ2/ν b A χ2/ν

NGP 0.89+0.01
−0.01 0.73+0.24

−0.24 6.5/5 0.89+0.01
−0.01 0.39+0.27

−0.27 6.9/5 0.89+0.01
−0.01 0.47+0.27

−0.26 8.1/5

HS-82 0.89+0.01
−0.01 0.79+0.14

−0.14 8.0/5 0.89+0.01
−0.01 1.00+0.14

−0.14 10.5/5 0.89+0.01
−0.01 0.89+0.15

−0.15 10.3/5

SGP Part-1 1.02+0.02
−0.02 0.80+0.23

−0.23 1.4/5 1.02+0.02
−0.02 1.04+0.26

−0.26 1.3/5 1.02+0.02
−0.02 1.11+0.26

−0.26 0.9/5

SGP Part-2 0.70+0.01
−0.01 0.67+0.18

−0.18 1.3/5 0.70+0.01
−0.01 0.75+0.21

−0.21 3.3/5 0.70+0.01
−0.01 0.72+0.21

−0.21 3.1/5
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Figure 3.16: cross-power spectra (Bottom) for cross-correlations of HELP fields with MV (blue
cicles), SZ-deproj (red squares) and TT (green stars) maps. The colour dashed lines are their
corresponding theoretical power spectra computed using the best-fit values obtained from like-
lihood analysis quoted in Table 3.5.

3.8 Summary

We have presented measurement of cross-correlation between the minimum-variance CMB lens-

ing convergence map from Planck 2018 data release and galaxy catalogues from the Herschel

Extragalactic Legacy Project. For our analysis, we have selected three of the largest and most

uniform fields of the catalogue namely, NGP, HS-82, and SGP divided into two parts. The areas

covered by these fields are: ∼ 180 deg2, ∼ 255 deg2, ∼ 85 deg2 and ∼ 145 deg2, respectively.

We have shown that for MV lensing map the no correlation hypothesis can be ruled out with

a significance of about 1.7σ for NGP, ∼ 9.2σ for HS-82, ∼ 2.6σ for SGP Part-1 and ∼ 2.5σ

for SGP Part-2 field. A joint analysis of galaxy auto-power spectrum and cross-power spectrum

using Maximum Likelihood approach gives the galaxy linear bias parameter for different fields

ranging from b0 = 0.70± 0.01 for SGP Part-2 to b0 = 1.02± 0.02 for SGP Part-1 field. The
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cross-correlation amplitude varies from A = 0.67± 0.18 for SGP Part-2 to A = 0.80± 0.23 for

SGP Part-1 field and a significance of its deviation from one is 1 σ for NGP and SGP Part-1,

∼ 1.5σ for HS-82 and ∼ 2σ for SGP Part-2.

Though, a significance of the deviation for the MV lensing map is not very high, especially

for NGP and SGP Part-1 fields, in all cases the amplitude is biased towards lower values sug-

gesting that there is some systematic error in the analysis. To check it we have investigated

some systematic errors that can account for this deviation, such as the effect of magnification

bias caused by weak gravitational lensing and catastrophic photo-z errors which were found to

have no notable improvement over the detected tension of cross-correlation amplitude A. We

also examined the effect of shifting the estimated median redshift of HELP galaxies and con-

cluded that a lower effective median redshift can increase the estimated value of amplitude A,

suggesting that the HELP catalogue may be shallower than expected. However, the amount of

shift required to remove the observed tension on the amplitude of cross-correlation, i.e. 20-25 %

of the median redshift, is much larger than the potential offset related with photometric redshift

errors, i.e. 5 % of the median. We also found out that variations across the fields in magnitude

limits of the catalogue caused by photometric calibration errors has no significant effect on the

cross-correlation amplitude. The amplitude turned out to be robust with respect to all studied

systematic errors that can affect either the redshift distribution or can very the number counts

of galaxies in the HELP survey.

Finally, we re-estimate parameters using two different CMB lensing convergence maps, the

Sunyaev-Zeldovich deprojected map (SZ-deproj map) and the temperature-only reconstruction

(TT) map. For both SZ-deproj and TT CMB lensing maps, the amplitude is higher than MV

map by ∼ 1σ and consistent with one for all fields, except NGP field for which its value is lower

than for the MV lensing map. These disparities can be explained by differences between MV and

SZ-deproj or TT lensing maps, however, it also shows that we need a more robust estimation

of the CMB lensing map for cross-correlation studies. We can expect that forthcoming CMB

experiments and galaxy surveys will allow us to perform more robust and precise cross-correlation

measurements in the future.
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Chapter 4

Tomography studies with galaxy

clustering and CMB lensing - impact of

leakage correction

4.1 Overview

In Chapter 3, we discussed different systematics and their impact on testing cosmological model

through cross-correlations between Planck CMB lensing potential and HELP galaxy catalogues.

Future galaxy surveys like Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST,

Ivezić et al. 2019; LSST Science Collaboration et al. 2009), Euclid (Laureijs et al., 2011), and

Dark Energy Spectroscopic Instrument (DESI) (Fagrelius 2020; Dey et al. 2019b) will enjoy

larger sky coverages (about half of the sky), increased depths and better estimation of photo-

metric redshifts. With these surveys we will be able to perform cross-correlation tomography

with galaxy samples divided into narrow redshift bins to map the evolution of the cosmological

parameters with redshift. In this chapter, we delve into quantifying the impact of inevitable

leakage of objects across redshift bins through Monte Carlo (MC) simulations of LSST galaxy

survey and Planck CMB lensing convergence.

We describe the simulation setup in section 4.2, the reconstruction of true redshift galaxy

distribution from observed photometric redshift galaxy distribution in section 4.3. We present

the results before leakage correction in section 4.4 and discuss the correction for leakage across

redshift bins through scattering matrix in section 4.5. In section 4.6, we quantify the impact of

leakage on cosmological parameters and finally summarise the conclusions from the chapter in

section 4.9
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4.2 Simulation setup

We use the publicly available code FLASK (Xavier et al., 2016) to generate 300 tomographic MC

realisations of correlated lognormal galaxy over-density and CMB lensing convergence fields.

As mentioned in section 3.5, simulations of Gaussian galaxy over-density fields often lead to

pixels with density g <−1, from which galaxy number count maps cannot be generated through

Poisson sampling. Thus, to avoid negative Poisson sampling, we use FLASK code to simulate

lognormal over-density fields. The simulated galaxy density follows LSST photometric redshift

distribution profile (Ivezić et al. 2019; LSST Science Collaboration et al. 2009) with mean redshift

0.9 and mean surface number density of 40 arcmin−2. The simulated CMB lensing convergence

field is consistent with Planck observations (Planck Collaboration et al., 2020b). The galaxy

density field is induced with Poisson noise and for CMB convergence we use the noise power

spectrum provided in the Planck 2018 data package1. Due to limitations of computational

capabilities, the sky area covered in our simulations is 2000 deg2, however, the results obtained

in this study should remain valid for the planned area of the LSST survey, provided the errors

are appropriately scaled by the fraction of sky coverage. The mock galaxy samples are divided

into 9 disjoint tomographic bins with redshift intervals (0.0,0.2,0.4,0.6,0.8,1.0,1.4,1.8,2.2,3.0],

as marked by the dashed vertical lines in Figure 4.1. The fiducial angular power spectra for each

redshift bin used to generate correlated maps are computed through Eq. (2.8) following Limber

approximation (Limber, 1953). The matter power spectrum P(k,z) is generated using the public

software CAMB2 (Lewis et al., 2000) and we assume α = 1 in the galaxy kernel (Eq. 2.7), so

that there is no effect of magnification bias on our simulations, leaving study of its impact for

future work.

We use a redshift dependent model of galaxy bias (Solarz et al. 2015; Moscardini et al. 1998;

Fry 1996):

b(z) = 1 +
b0 −1
D(z)

(4.1)

where we take b0 ≡ b(z = 0) = 1.3 and D(z) is the linear growth function normalised to unity at

z = 0:

D(z) = exp
{
−

z∫
0

[Ωm(z′)]γ

1 + z′
dz′
}

(4.2)

where γ = 0.55 is the growth index for the General Relativity (Linder, 2005).

For every simulation, FLASK code produces CMB convergence map and galaxy number count

maps for each tomographic bin along with the catalogue of galaxy redshifts. We term these

maps as true datasets. We generate photometric redshifts, zp, for galaxies in every simulation

by drawing positive random values from Gaussian distributions with their true redshift zt as the

mean and standard deviation σ0(1 + zt). We adopt two different values of σ0: 0.02 and 0.05, to

study the dependence of our results on the strength of redshift scatters. The galaxies are again

divided into 9 tomographic bins based on their photometric redshifts. In Figure 4.1, we show

the true LSST redshift distribution (blue solid curve) divided into 9 photometric redshift bins

1https://pla.esac.esa.int/#cosmology
2https://camb.info/
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Figure 4.1: True LSST redshift distribution (blue solid curve) divided into 9 photometric redshift
bins (shown by solid green curves) for σ0 = 0.02 (left) and σ0 = 0.05 (right). The red line denotes
the CMB lensing kernel and the orange dashed vertical lines mark the true redshift bins. The
full LSST redshift distribution and CMB lensing kernel are normalized to unit maximum.

(solid green lines) and the CMB lensing kernel (red solid curve) in the redshift range 0 ≤ z ≤ 3.

The green lines represent how the disjoint true redshift bins transform after introducing the

photometric redshift errors.

We build galaxy over-density maps from photometric number count maps (hereafter, photo-

metric datasets) with HEALPix3 (Górski et al., 2005) resolution parameter Nside = 1024 using

Eq. (3.1)

g(n̂) =
n(n̂)−n

n

where n(n̂) is the number of galaxies at angular position n̂ and n is the mean number of galaxies

per pixel. In Table 4.1, we present from one realisation the comparison of the mean number of

objects per pixel (for Nside = 1024) and median redshift between true and photometric datasets.

For the simulations and analyses presented in this paper, we adopt the flat ΛCDM cosmology

with best-fit Planck + WP + highL + lensing cosmological parameters, as described in Planck

Collaboration et al., 2020a. Here, WP refers to WMAP polarisation data at low multipoles,

highL is the high-resolution CMB data from Atacama Cosmology Telescope (ACT), and South

Pole Telescope (SPT) and lensing refer to the inclusion of Planck CMB lensing data in the

parameter likelihood.

4.3 Estimation of true redshift distribution

The true redshift distribution dN(zt)
dzt

is estimated from the observed photometric redshift distribu-

tion
dN(zp)

dzp
and some quantification of errors on the photometric redshifts (from cross-validation

3https://healpix.jpl.nasa.gov/
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Table 4.1: Comparison of physical properties between true and photometric datasets for all
tomographic bins. n is the mean number of objects per pixel and z represents the median
redshift of the tomographic bin.

z n (true) n (photo) z (true) z (photo)
σ0 = 0.02 σ0 = 0.05 σ0 = 0.02 σ0 = 0.05

[0.0,0.2) 14.35 14.77 17.02 0.144 0.144 0.145
[0.2,0.4) 57.02 57.04 57.11 0.311 0.312 0.315
[0.4,0.6) 81.78 81.60 80.68 0.502 0.503 0.506
[0.6,0.8) 82.79 82.58 81.54 0.698 0.699 0.702
[0.8,1.0) 70.58 70.42 69.63 0.896 0.898 0.900
[1.0,1.4) 93.31 93.19 92.60 1.178 1.180 1.183
[1.4,1.8) 44.37 44.40 44.57 1.572 1.575 1.577
[1.8,2.2) 18.44 18.50 18.83 1.968 1.972 1.974
[2.2,3.0) 9.58 9.68 10.22 2.472 2.471 2.471

with some spectroscopic survey or posteriors from machine learning methods). Often these

errors are expressed by conditional probabilities p(zp − zt |zt) and p(zt − zp|zp). The true and

photometric redshift distributions are then related through (Sheth & Rossi, 2010)

dN(zt ,zp)

dztdzp
=

dN(zt)

dzt
p(zp − zp|zt) =

dN(zp)

dzp
p(zt − zp|zp) (4.3)

Thus depending on whether we have estimates of p(zp − zt |zt) or p(zt − zp|zp), the method for

estimation of the true redshift distribution is called deconvolution or convolution, respectively.

4.3.1 Convolution method

When p(zt − zp|zp) is known, we can estimate dN(zt)
dzt

for each tomographic bin i using convolution

dNi(zt)

dzt
=
∫

dzp
dNi(zp)

dzp
pi(zt − zp|zp) (4.4)

where
dNi(zp)

dzp
is the photometric redshift distribution of objects for the ith redshift bin. Generally,

pi(zt − zp|zp) is fitted with parametric functions like Gaussian with assumed zero mean (Sun et

al. 2022; Marques and Bernui 2020) or modified Lorentzian with zero mean (Hang et al. 2021;

Peacock and Bilicki 2018). Sheth and Rossi, 2010 have shown that the quantity p(zt − zp|zp) will

be biased and not centered on zero. In our study, we fit the error distribution with a sum of

three Gaussians

N (x) =
3

∑
i=1

Ai exp
[

(x−µi)
2

2σ2
i

]
(4.5)

where A,µ,σ control the amplitude, mean and width of the individual Gaussians. The sum of

Gaussians can account for the bias in p(zt − zp|zp), as well as other characteristic features of the

error distributions like non-Gaussian wings and higher peak in the center. We also check the fit

with a higher number of Gaussians but do not find any improvement in the quality of fit beyond

three Gaussians. For each of the tomographic bins, we fit for Ai,µi,σi, and estimate the true

redshift distribution using Eq. (4.4).
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4.3.2 Deconvolution method

The true redshift distribution dN(zt)
dzt

can be estimated by a deconvolution method when p(zp −
zt |zt) is known:

dN(zp)

dzp
=
∫

dzt
dN(zt)

dzt
p(zp − zt |zt) (4.6)

We fit p(zp − zt |zt) with a single Gaussian and find the mean to be consistent with zero, in

agreement with the unbiased nature of p(zp − zt |zt). We also fit the error distribution with a

sum of Gaussians to find no significant improvement in the fit quality. Padmanabhan et al.,

2005 proposed a deconvolution method based on Tikhonov regularisation, which lacks a general

method to quantify the impact of penalty function on the reconstruction of dN(zt)
dzt

. We use a

different approach to deconvolution. It is based on the convolution theorem and kernel-based

regularisation (Meister, 2009). The true redshift distribution in our approach is estimated as

dN(zt)

dzt
= F−1

[ F [
dN(zp)

dzp
]

F [p(zp − zt |zt)]

]
(4.7)

where F and F−1 represents the Fourier and inverse Fourier transforms, respectively. We

estimate the true redshift distribution for the entire redshift range, 0 < z ≤ 3, then the true

redshift distribution for each tomographic bin, i, can be expressed as

dNi

dzt
=

dN
dzt

W i(zt) (4.8)

where W i(zt) is the Heaviside step function defined as

W i(zt) =

1, if zi
min ≤ zt < zi+1

min

0, otherwise
(4.9)

The corresponding photometric redshift distribution for every tomographic bin i is given by

dNi(zp)

dzp
=
∫

dzt
dNi(zt)

dzt
pi(zp − zt |zt) (4.10)

where pi(zp−zt |zt) is the error distribution for bin i. Eq. (4.6) will not follow convolution strictly

near z = 0, since negative redshifts are unphysical. Due to this fact, the reconstructed true

redshift distribution will be inaccurate close to redshift z = 0, and we expect these inaccuracies

to affect to some extent the first two tomographic bins.

4.4 Results

In this section, we present results of estimating true redshift distribution and power spectra for

datasets simulated by the FLASK code. We check for any systematics in the estimation for

datasets without photometric redshift errors as well as with added errors. The power spectra

from the simulated maps are computed from the full-sky estimator based on MASTER algorithm

described in the section 3.3. We estimate all full-sky power spectra in linearly spaced multipole

bins between 50 ≤ ℓ≤ 1500 with binwidth ∆ℓ = 30.
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4.4.1 Estimation of the true redshift distribution
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Figure 4.2: Left : Fit made to the error function p(zp−zt |zt) (red solid line) using single Gaussian
(blue dashed line). Right : Fit made to the error function p(zt −zp|zp) (red solid line) using single
Gaussian (orange dotted line) and sum of three Gaussians (blue dashed line).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
z

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

N
re

c
N

tr
ue

N
tr

ue

0.0 0.5 1.0 1.5 2.0 2.5 3.0
z

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

N
re

c
N

tr
ue

N
tr

ue

Figure 4.3: Average relative difference between the redshift distribution reconstructed using
deconvolution method and the true distribution for 300 simulations with left : σ0 = 0.02 and
right : σ0 = 0.05. The shaded region represents the fluctuations in reconstruction between 300
simulations.

The estimation of the true redshift distribution requires fitting the error function (i.e. ei-

ther p(zt − zp|zp) or p(zp − zt |zt)) with parametric functions. We have used a single Gaussian

for p(zp − zt |zt) and a sum of three Gaussian to fit p(zt − zp|zp). Figure 4.2 shows the quality of

fit to the error functions with σ0 = 0.02 and compares single Gaussian versus three Gaussians

fit of p(zt − zp|zp). The sum of three Gaussians provides a significantly better fit by accurately
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capturing the non-Gaussian wings of the error function. The uncertainties in these fits remain

within 0.25%, and we do not expect these sub-per cent uncertainties to bias the power spectra

or estimation of parameters.

In Figure 4.3, we show the relative error, averaged over 300 simulations, of the redshift dis-

tribution reconstructed using the deconvolution method for the two cases of σ0 = 0.02 and 0.05.

The reconstructed redshift distribution is within ∼ 2% for the entire redshift range with maxi-

mum deviations occurring near z = 0 possibly due to sharp cuts in the redshift distribution near

the boundaries at z = 0 and z = 3 (section 4.3.2).

4.4.2 Validation from true datasets

Before adding photometric redshift errors in the simulations generated by the FLASK code, we

verify the validity of this code for simulations without added errors. In the top panel of Figure

4.4 we show, for every tomographic bin, the relative difference between noise-subtracted average

galaxy auto-power spectra and their theoretical expectation with error bars computed using

∆Cxy
L =

(
Covxy

LL
Nsim

)1/2

(4.11)

where Covxy
LL is the covariance matrix constructed from simulations following Eq. (3.7) and Nsim

is the number of simulations.

The bottom panel of Figure 4.4 and Figure 4.5 present the relative differences for the cross-

power spectrum and CMB convergence auto-power spectrum, respectively. The noise from

galaxy density and CMB convergence fields are uncorrelated, and there will be no noise associated

with their cross-power spectrum. Their power spectra are consistent with their theoretical

expectations and thus, the FLASK simulations are free from any internal systematics.

4.4.3 Power spectra from photometric datasets

We compute the power spectra from simulated photometric datasets with the MASTER method

described in section 2.3. The relative difference between the noise-subtracted average galaxy

auto-power spectra (Cgg
ℓ ) estimated from 300 simulations and the theoretical power spectra is

shown in the top panel of Figure 4.6. The blue circles present the offsets for photometric datasets

with σ0 = 0.02 and the green squares are for σ0 = 0.05. The bottom panel of Figure 4.6 show

the relative differences in the cross-power spectra between CMB lensing and galaxy over-density

(Cκg
ℓ ). The theoretical galaxy auto-power spectra and cross-power spectra are computed using

the redshift distributions estimated by the convolution method (Eq. 4.4) described in section

4.3.1. The estimated galaxy auto-power spectra are smaller than expectations in every to-

mographic bin, with offsets varying between 2− 15% for σ0 = 0.02 and between 15− 40% for

σ0 = 0.05. The cross-power spectra comparatively smaller biases, i.e. < 5% in every tomographic

bin for both σ0 = 0.02 and σ0 = 0.05. We find similar offsets when the true redshift distribu-

tions (and hence the theoretical power spectra) are computed using the deconvolution method

(following Eq. 4.10). This shows that the offsets in the power spectra are not related with the
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Figure 4.4: Relative errors in (top:) the average galaxy auto-power spectrum and (bottom:) the
cross power spectrum, reconstructed from 300 simulations generated by the FLASK code without
adding photometric redshift errors. The error bars on the data points are estimated from 300
simulations using Eq. 4.11.

deconvolution method. Furthermore, since larger photometric redshift scatters lead to larger

deviations in the power spectra, this confirms that the origin of these offsets is rooted in the

leakage of objects from one redshift bin to the other due to photometric redshift errors. These

deviations will also impact estimation of cosmological parameters from the power spectra.

4.5 Leakage correction through scattering matrix

Due to errors in photometric redshifts, a fraction of galaxies observed in a photometric redshift

bin come from other redshift bins. The leakage of objects across redshift bins changes the

strength of correlation in a tomographic analysis as well as result in non-zero correlation between

different redshift bins. In this section, we attempt to counter the leakage of objects across redshift
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Figure 4.5: Relative errors in the average CMB convergence auto-power spectrum reconstructed
from 300 simulations. The error bars on the data points are estimated from 300 simulations
using Eq. 4.11.

bins through scattering matrix. If we divide galaxies into n tomographic bins, then Zhang et al.,

2010 have shown that galaxy auto-power spectrum between ith and jth photometric bins, Cgg,ph
i j ,

are related to the galaxy auto-power spectra from true redshift bins Cgg,tr by

Cgg,ph
i j (ℓ) = ∑

k
PkiPk jC

gg,tr
kk (ℓ) (4.12)

when there are no cross-correlation between true redshift bins. Eq. (4.12) can be generalized for

the case with true redshift bins having non-zero correlations, however, using disjoint true redshift

bins significantly reduces the complexity. The elements of the scattering matrix Pi j are defined

as the ratio Ni→ j/Nph
j , where Ni→ j is the number of galaxies moving from ith true redshift bin

to jth photometric bin and Nph
j is the total number of galaxies in the jth photometric bin. This

definition also produces a natural normalisation ∑
i

Pi j = 1. A similar relation for the cross-power

spectra between galaxy over-density in photometric redshift bin i and CMB lensing convergence

can be obtained as

Cκg,ph
i (ℓ) = ∑

k
PkiC

κg,tr
kk (ℓ) (4.13)

If we collect Pi j as elements of the scattering matrix P, then we can compactly write

Cgg,ph = PTCgg,trP (4.14)

Cκg,ph = PTCκg,tr (4.15)

where PT denotes the transpose of matrix P. Eqs. (4.14-4.15) show that the redistribution of

galaxies across redshift bins due to photometric redshift errors results is a non-trivial relation

between the photometric and true power spectra, weighted by the elements of the scattering

matrix. Thus to properly mitigate the effects of leakage on power spectra, a precise estimation

of the scattering matrix is necessary.

Zhang et al., 2017 proposed an algorithm to solve problems similar to Eq. (4.14) based

on Non-negative Matrix Factorization (NMF) method, that simultaneously approximates the

matrices P and Cgg,tr. However, the NMF method proves to be computationally challenging for

cases with a large number of tomographic and multipole bins. Here we propose an alternative

44



CHAPTER 4. LEAKAGE CORRECTION

0.4

0.3

0.2

0.1

0.0

0.1 0.0 z <  0.2 0.2 z <  0.4 0.4 z <  0.6

0.4

0.3

0.2

0.1

0.0

0.1

Cgg
C

gg
,t

h )/C
gg

,t
h

0.6 z <  0.8 0.8 z <  1.0 1.0 z <  1.4

250 500 750 1000 1250 1500

0.4

0.3

0.2

0.1

0.0

0.1 1.4 z <  1.8

250 500 750 1000 1250 1500

1.8 z <  2.2

250 500 750 1000 1250 1500

2.2 z <  3.0

0 = 0.02 0 = 0.05

0.05

0.00

0.05

0.10

0.15

0.0 z <  0.2 0.2 z <  0.4 0.4 z <  0.6

0 = 0.02 0 = 0.05

0.05

0.00

0.05

0.10

0.15

C
g

C
g,

th
)/C

g,
th

0.6 z <  0.8 0.8 z <  1.0 1.0 z <  1.4

250 500 750 1000 1250 15000.05

0.00

0.05

0.10

0.15

1.4 z <  1.8

250 500 750 1000 1250 1500

1.8 z <  2.2

250 500 750 1000 1250 1500

2.2 z <  3.0

Figure 4.6: Relative errors in (top:) the average galaxy auto-power spectrum and (bottom:) the
cross power spectrum, computed from 300 simulations after adding photometric redshift errors.
The error bars on the data points are estimated from 300 simulations using Eq. 4.11.
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method for fast and efficient computation of the scattering matrix based on the true and pho-

tometric redshift distributions. We first estimate the true redshift distribution, dN(zt)
dzt

, for the

entire redshift range following Eq. (4.7) and then we use Eq. (4.10) to compute the redshift

distribution
dNi(zp)

dzp
for every tomographic bin i. The elements of the scattering matrix Pi j can

then be computed directly by using the relation

Pi j =

z j+1
min∫

z j
min

dzp
dNi

dzp

z j+1
min∫

z j
min

dzp
dN
dzp

(4.16)

where dN
dzp

is the observed photometric redshift distribution of galaxies and z j
min is the lower limit

of the jth redshift bin. Our method of computing the elements of the scattering matrix is sig-

nificantly faster than the NMF method, and is only subject to accurate estimation of the true

redshift distribution.

Figure 4.7 shows the performance of estimation of the scattering matrix from our proposed

method using distributions for the two cases of σ0 = 0.02 and 0.05. The average value of the

scattering matrix ⟨P⟩ and its standard deviation σ(P) averaged over 300 simulations are shown

in top and middle panels of Figure 4.7, respectively. We note that the scattering matrix ele-

ments corresponding to the first true redshift bin have the maximum standard deviation. This

behaviour is expected as the objects near z = 0 do not strictly follow convolution as discussed in

section 4.3.2. The accuracy of the estimation of the scattering matrix can be verified using true

scattering matrix PTrue computed based on exactly counting the number of objects moving from

one redshift bin to the other. In the bottom panel of Figure 4.7, we show the difference between

the scattering matrix computed from our method and PTrue, averaged over 300 realisations. We

find that |P−PTrue|< 0.006 for all elements of the scattering matrix, with maximum differences

occurring in the first and last tomographic bins, i.e. near the boundaries of the redshift range

simulated in our analysis. Hence, the overall precision and accuracy in the estimation of the

scattering matrix is found to be good enough and the estimate of the scattering matrix can be

used for correcting bin mismatch leakage for the power spectra.

Given an estimate of the true redshift distribution deconvoluted from the observed photo-

metric redshift distribution and scattering matrix, the impact of leakage of the objects can be

corrected in two ways: either by transforming true theoretical power spectra Cth,tr to Cth,ph

using Eqs. (4.14) and (4.15) and comparing it to the estimated photometric power spectra Cph
,

or by inverting Eqs. (4.14) and (4.15) to transform the estimated photometric power spectra

Cph
to true power spectra Ctr

and comparing it to the theoretical true power spectra Cth,tr. We

use the former approach for figures showing comparison of power spectra while the latter for

estimation of cosmological parameters.

In Figure 4.8 we show the noise-subtracted average galaxy auto-power spectra Cgg
ℓ and cross-

power spectra Cκg
ℓ for photometric redshift scatter σ0 = 0.02. The red solid lines are the theoret-
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Figure 4.7: Performance of scattering matrix computed with the method described in section
4.5. Top: The average scattering matrix computed from 300 realisations, middle: its standard
deviation, and bottom: the difference between scattering matrix computed from our method
and true scattering matrix computed from simulated catalogues. Left column: scattering matrix
estimated for σ0 = 0.02; Right column: scattering matrix estimated for σ0 = 0.05.
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Figure 4.8: (Top:) average galaxy auto-power spectrum and (bottom:) cross power spectrum
estimated from 300 simulations with photometric redshift scatter σ0 = 0.02. The red solid line
and the green dashed line are the theoretical power spectra before and after leakage correction.
The error bars on the data points are estimated from 300 simulations using Eq. 4.11.
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Figure 4.9: (Relative errors on the average top) galaxy auto-power spectrum and (bottom) cross
power spectrum for photometric redshift scatter σ0 = 0.02. The blue circles and red squares are
offsets before and after correcting the theoretical power spectra for leakage, respectively. The
error bars on the data points are estimated from 300 simulations using Eq. 4.11.
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Figure 4.10: (Top:) average galaxy auto-power spectrum and (bottom:) cross power spectrum
estimated from 300 simulations with photometric redshift scatter σ0 = 0.05. The red solid line
and the green dashed line are the theoretical power spectra before and after leakage correction.
The error bars on the data points are estimated from 300 simulations using Eq. 4.11.
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Figure 4.11: Relative errors on the average top) galaxy auto-power spectrum and (bottom) cross
power spectrum for photometric redshift scatter σ0 = 0.05. The blue circles and red squares are
offsets before and after correcting the theoretical power spectra for leakage, respectively. The
error bars on the data points are estimated from 300 simulations using Eq. 4.11.
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ical power spectrum without accounting for leakage computed using redshift distribution given

by Eq. (4.4) and the green dashed lines are the theoretical power spectra Cth,ph estimated using

Eqs. (4.14) and (4.15). Figure 4.9 show the relative errors between the estimated average power

spectra with σ0 = 0.02 and the theoretical power spectra estimated without leakage correction

(blue circles) and after accounting for leakage (red squares). Figures 4.10 and 4.11 present sim-

ilar results for the case of photometric redshift scatter σ0 = 0.05.

The theoretical power spectra after leakage correction agree completely with estimated power

spectra in all bins, for both cases of σ0 = 0.02 and 0.05. The disparity in the first and last bins

results directly from the inaccuracy of the deconvolution method near lower and upper bounds

of the redshift distribution considered in the analysis. Nevertheless, we notice that even for

those tomographic bins the agreement with corresponding theoretical power spectra improves.

4.6 Parameter estimation

In previous sections, we observed that the power spectra in every tomographic bin gets biased

due to leakage of objects across redshift bins, which can be corrected by accurate estimation

of the scattering matrix. In this section, we study the impact of leakage on the estimation of

redshift dependent galaxy linear bias b and amplitude of cross-correlation A from tomographic

bins, estimated using Maximum Likelihood Estimation method discussed in section 2.4.

We use flat priors b ∈ [0,10] and A ∈ [−5,5] for the estimation of parameters while the re-

maining cosmological parameters are kept constant with values from our fiducial background

cosmology described in section 4.2. To effectively sample the parameter space, we use a pub-

licly available software package EMCEE (Foreman-Mackey et al., 2013). The best-fit value of the

parameters are medians of their posterior distributions, with ±1σ errors being the 16th and

84th percentile, respectively. We use the average power spectra estimated from 300 simulations

for the estimation of parameters, hence, we divide the covariance matrices (see section 2.4 for

covariance matrices used in the likelihood function) by
√

Nsim, where Nsim is the total number

of simulations.

Before accounting for leakage, we estimate the galaxy linear bias and cross-correlation am-

plitude for every tomographic bin using the average galaxy power spectra and the average cross-

power spectra estimated from photometric datasets. The theoretical power spectrum templates

for tomographic bin i are computed using the relations

Cgg,th
i (ℓ) =

∫
χ∗

0

dχ

χ2

(
dNi(zt)

dzt

)2

P
(

k =
ℓ+ 1/2

χ
,z(χ)

)
(4.17)

Cκg,th
i (ℓ) =

∫
χ∗

0

dχ

χ2 W κ(χ)
dNi(zt)

dzt
P
(

k =
ℓ+ 1/2

χ
,z(χ)

)
(4.18)

where dNi(zt)
dzt

is given by Eq. (4.4). To estimate parameters b and A after accounting for leakage,
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we transform the extracted photometric power spectra (Cgg,ph
and Cκg,ph

) to true power spectra

by inverting Eqs. (4.14) and (4.15). The theoretical power spectrum templates for likelihood

estimation after leakage correction are computed using Eqs. (4.17) and (4.18) and substituting

Eq. (4.8) for dNi(zt)
dzt

. It is important to note that the photometric power spectra in tomographic

analysis are a combination of true power spectra as represented in Eqs. (4.14) and (4.15). Thus,

the galaxy linear bias in a photometric redshift bin will also be a combination of the galaxy

linear bias from the true redshift bins. The estimation of parameters can also be performed

directly over the estimated photometric power spectra by properly defining the covariance ma-

trix in the likelihood function. However, transforming the estimated photometric power spectra

to true power spectra for parameter estimation saves us from the complexities of defining the

covariance matrix as well as reduces the computation time.

The best-fit values of galaxy linear bias and cross-correlation amplitude from all tomographic

bins with ±1σ errors, estimated before and after leakage corrections, are quoted in Table 4.2

for σ0 = 0.02 and Table 4.3 for σ0 = 0.05. The column btrue in these tables are the true values

of bias for every tomographic bin. The galaxy linear bias for every tomographic bin estimated

from photometric datasets are smaller than their expected value for both σ0 = 0.02 and 0.05,

whereas the amplitude of cross-correlation are consistently higher than the expected value of

unity. However, both parameters become consistent with their expected values after correcting

for leakage. The galaxy linear bias shows marginal deviations from its true values, the amplitude

of cross-correlation is perfectly consistent with its expected value of unity within 1σ .

Table 4.2: Best fit values of galaxy linear bias b and amplitude of cross-correlation A for all to-
mographic bins with σ0 = 0.02, estimated before leakage correction and after correction through
the scattering matrix approach. btrue is the true value of bias for the tomographic bin.

z btrue No correction With correction

b A b A

[0.0,0.2) 1.3241 1.3552+0.0002
−0.0002 1.0243+0.0110

−0.0110 1.3357+0.0002
−0.0002 0.9952+0.0124

−0.0125

[0.2,0.4) 1.3541 1.3497+0.0002
−0.0002 1.0269+0.0064

−0.0064 1.3557+0.0002
−0.0002 1.0014+0.0069

−0.0069

[0.4,0.6) 1.3909 1.3623+0.0002
−0.0002 1.0440+0.0053

−0.0054 1.3911+0.0002
−0.0002 0.9990+0.0058

−0.0057

[0.6,0.8) 1.4307 1.3772+0.0002
−0.0002 1.0645+0.0050

−0.0050 1.4308+0.0002
−0.0002 0.9998+0.0054

−0.0053

[0.8,1.0) 1.4724 1.3909+0.0002
−0.0002 1.0816+0.0049

−0.0049 1.4724+0.0002
−0.0002 0.9999+0.0053

−0.0053

[1.0,1.4) 1.5337 1.4907+0.0002
−0.0002 1.0465+0.0037

−0.0037 1.5329+0.0002
−0.0002 1.0003+0.0038

−0.0038

[1.4,1.8) 1.6217 1.5496+0.0002
−0.0002 1.0691+0.0041

−0.0040 1.6223+0.0002
−0.0002 1.0005+0.0042

−0.0042

[1.8,2.2) 1.7118 1.5832+0.0003
−0.0003 1.0963+0.0047

−0.0047 1.7149+0.0003
−0.0003 0.9986+0.0048

−0.0048

[2.2,3.0) 1.8277 1.7318+0.0005
−0.0005 1.0668+0.0047

−0.0047 1.8137+0.0004
−0.0004 1.0050+0.0048

−0.0047

In Figure 4.12 we show the estimates of galaxy linear bias and amplitude of cross-correlation

for σ0 = 0.02 (left column) and σ0 = 0.05 (right column). The blue circles and red squares

represent the parameter estimates before and after leakage correction, respectively. The error
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Table 4.3: Best fit values of galaxy linear bias b and amplitude of cross-correlation A for all to-
mographic bins with σ0 = 0.05, estimated before leakage correction and after correction through
the scattering matrix approach. btrue is the true value of bias for the tomographic bin.

z btrue No correction With correction

b A b A

[0.0,0.2) 1.3241 1.2172+0.0002
−0.0002 1.2081+0.0100

−0.0100 1.3686+0.0002
−0.0002 0.9872+0.0123

−0.0123

[0.2,0.4) 1.3541 1.2288+0.0002
−0.0002 1.0941+0.0059

−0.0058 1.3555+0.0002
−0.0002 1.0019+0.0069

−0.0069

[0.4,0.6) 1.3909 1.2194+0.0002
−0.0002 1.1354+0.0049

−0.0049 1.3911+0.0002
−0.0002 0.9986+0.0057

−0.0057

[0.6,0.8) 1.4307 1.2088+0.0002
−0.0002 1.1849+0.0045

−0.0046 1.4311+0.0002
−0.0002 0.9998+0.0054

−0.0054

[0.8,1.0) 1.4724 1.1856+0.0002
−0.0002 1.2421+0.0044

−0.0045 1.4729+0.0002
−0.0002 0.9996+0.0052

−0.0052

[1.0,1.4) 1.5337 1.3626+0.0002
−0.0002 1.1333+0.0036

−0.0036 1.5344+0.0002
−0.0002 0.9990+0.0039

−0.0038

[1.4,1.8) 1.6217 1.3589+0.0002
−0.0002 1.2169+0.0040

−0.0039 1.6247+0.0002
−0.0002 0.9988+0.0042

−0.0042

[1.8,2.2) 1.7118 1.3692+0.0003
−0.0003 1.2791+0.0046

−0.0046 1.7138+0.0003
−0.0003 0.9994+0.0048

−0.0048

[2.2,3.0) 1.8277 1.6220+0.0005
−0.0005 1.1614+0.0047

−0.0047 1.8078+0.0004
−0.0004 1.0082+0.0047

−0.0048

bars on the data points have been re-scaled by multiplying with
√

Nsim to match the error

budget of a single realization. The top panel of Figure 4.12 presents the evolution of galaxy

bias with redshift. The black dashed line marks the fiducial evolution of galaxy bias used in our

simulations. The middle panel shows the z-score values for the galaxy linear bias parameter.

Without properly accounting for the scatter of objects across redshift bins, the galaxy bias can

deviate between 5−30σ when σ0 = 0.02, and by 25−110σ when σ0 = 0.05. Such large deviations

on galaxy linear bias are visible because the errors from likelihood estimation (quoted in Tables

4.2 and 4.3) are between 0.15−0.5% for a single realization. This shows that the estimates for

the galaxy bias are very tightly constrained. The bottom panel of Figure 4.12 shows the z-score

values for the amplitude of cross-correlation, which can deviate up to ∼ 1.2σ with σ0 = 0.02,

and up to ∼ 3.5σ when σ0 = 0.05. As it is clearly conveyed by Figure 4.12, the parameters

galaxy linear bias and cross-correlation amplitude become consistent with their expected values

after correcting for the effect of redshift bin mismatch of objects through our scattering matrix

formalism.

4.7 A note on σ8 parameter estimation

We have shown in section 4.6 that the scatter of objects across redshift bins can lead to a biased

estimation of parameters, thus altering our inferences about the cosmological model. In this

section we will estimate the impact of leakage on the σ8 parameter. Peacock and Bilicki, 2018

proposed a method to compute the σ8 parameter from the cross-correlation amplitude using the

relation:

σ8(z) = A(z)σ8,0 D(z) (4.19)
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Figure 4.12: Comparison of top: galaxy linear bias, middle: z-score for galaxy linear bias,
and bottom: z-score for cross-correlation amplitude before (blue circles) and after (red squares)
leakage correction. The left column is comparison for σ0 = 0.02 and the right column for σ0 =
0.05. The error bars on parameters are re-scaled to a single realization.
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where σ8,0 is the value of σ8 parameter at redshift z = 0 and D(z) is the linear growth function

given by Eq. (4.2). We compute the value of σ8,0 for our assumed background cosmology using

CAMB software. In Figure 4.13, we show the impact of scattering of objects on σ8 parameter

computed using Eq. (4.19), for σ0 = 0.02 (in left panel) and 0.05 (on the right). The error bars

are multiplied with
√

Nsim (where Nsim is the number of simulations) to re-scale it to a single

realization. The black dashed lines are the fiducial evolution of σ8 parameter with redshift. We

measure a higher than expected value of σ8 without taking into account the leakage of objects

across tomographic bins. As expected, the biases suffered by the amplitude of cross-correlation

are reflected directly in the values of σ8 parameter. Thus, it becomes crucial to correct for the

cross-talk between different redshift bins in a tomographic analysis to get an unbiased estimate

of cosmological parameters.
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Figure 4.13: Comparison of σ8 parameter before and after leakage correction for σ0 = 0.02 (left)
and σ0 = 0.05 (right). The black dashed line is the fiducial evolution of σ8 parameter used during
simulations.

4.8 Impact of redshift binwidth

In section 4.4, we have shown that the photometric angular power spectra measured in a tomo-

graphic analysis are biased due to leakage of objects across redshift bins. The biased power

spectra can be corrected using scattering matrix as described in section 4.5. We estimate

galaxy linear bias and cross-correlation amplitude from 9 redshift bins with different bin-sizes

∆z = 0.2,0.4, and 0.8 in the redshift range z = [0,1.0), [1.0,2.2), and [2.2,3.0], respectively. We

find that the galaxy linear bias is estimated smaller than their expectations without correcting

for scatter of objects. We note that there is an indication from Figure 4.12 that the deviations in

the parameters may be dependent on the size of the redshift bin. Thus, in this section, we study

the impact of size of redshift bins on the bias incurred by the power spectra and parameters due

to photometric redshift scatters.

56



CHAPTER 4. LEAKAGE CORRECTION

We create 4 sets of 300 simulated maps using the FLASK code with galaxy density following

LSST specifications and CMB lensing following Planck observations, using the procedure de-

scribed in section 4.2. We generate photometric redshifts in each simulation from a Gaussian

distribution following section 4.2 with σ0 = 0.02. Each set of photometric datasets is divided into

3 tomographic bins with redshift intervals (0.0,zmin,zmax,3.0], where zmin and zmax are chosen

such that the effect of growth function D(z) on the estimation of parameters from the second

redshift bin is marginalized. The values of zmin, zmax and size of the second redshift bin for all

5 sets are present in Table 4.4.

Table 4.4: Properties of the second redshift bin for 4 sets of simulations used to study the impact
of size of redshift bins on leakage. zmin and zmax are the lower and upper redshift bound for the
second tomographic bin and ∆z is the corresponding binwidth.

zmin zmax ∆z

Set 1 0.69 0.93 0.25

Set 2 0.63 1.00 0.37

Set 3 0.56 1.08 0.51

Set 4 0.46 1.28 0.82
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Figure 4.14: Comparison of galaxy auto-power spectra (left) and cross-power spectra (right)
before leakage correction for tomographic bins with sizes 0.25 (Set 1), 0.37 (Set 2), 0.51 (Set 3)
and 0.82 (Set 4). The error bars on the data points are estimated from 300 simulations using
Eq. 4.11.

We estimate the galaxy auto-power spectra and cross-power spectra from photometric datasets

for the second tomographic bin. In Figure 4.14 we compare the extracted power spectra before

leakage correction. The offsets in the photometric galaxy auto-power spectra moves from being

negatively biased (smaller than expected power spectra) to positively biased (larger than ex-

pected) with increasing redshift bin sizes. The cross-power spectra, however, shows only a weak

dependence on the redshift bin size. Since the galaxy auto-power spectra moves from negative to
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positive biased, it may be possible to find some optimal redshift binwidth for which the the bias

incurred by galaxy auto-power spectra will be close to zero. However, it is important to note

that offsets in the photometric galaxy auto-power spectra will depend on several factors like

photometric redshift errors, magnification bias, systematics such as catastrophic photometric

redshift errors and photometric calibration errors. We keep the study of these systematics on

the estimated galaxy auto-power spectra for future study.
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Figure 4.15: Scattering matrices estimated for four different sets of simulations.

In Figure 4.15, we show the scattering matrices computed using the procedure described

in section 4.5 for the four set of simulations. We show in Figure 4.16 the impact of different

bin sizes on the z-score values of parameters estimated through maximum likelihood estimation

before and after leakage correction. The error bars on the parameters are adjusted for a single

realization. Due to redshift bin mismatch of objects, the galaxy bias is estimated ∼ 25σ ,∼ 15σ

and ∼ 2σ lower than its true value for the redshift bin size ∆z = 0.25,0.37, and 0.51, respectively.

For binwidth ∆z = 0.82, the galaxy bias is estimated ∼ 12σ higher than its true value. The

amplitude of cross-correlation, being anti-correlated to the galaxy linear bias, is estimated larger

for ∆z = 0.25,0.37,0.51 and marginally smaller for ∆z = 0.82 compared to its true value of A = 1.
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The parameters, galaxy linear bias and amplitude of cross-correlation, become consistent with

their expectations after correcting for leakage. The dependence of the leakage bias on the size

of tomographic bins further establishes the importance of using our scattering matrix approach

for an unbiased estimation of cosmological parameters.
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Figure 4.16: Z-score for galaxy linear bias (left) and amplitude of cross-correlation (right) for
tomographic bins with different sizes, before (blue circles) and after (red squares) leakage cor-
rection with σ0 = 0.02.

4.9 Summary

We present the tomographic study of cross-correlations by performing simulations of Planck

CMB lensing convergence and galaxy density field mimicking properties of LSST photometric

survey. We use the FLASK code to simulate log-normal fields and divide the galaxies into 9 red-

shift bins. We consider photometric redshift errors with standard deviation of σ(z) = 0.02(1+ z)

and σ(z) = 0.05(1+z), but do not include catastrophic redshift errors or photometric calibration

errors, keeping them for future studies. In this sense, we generate an ‘ideal’ scenario in our sim-

ulations free from other systematics which is crucial to demonstrate the importance of leakage

of objects across redshift bins. We We compute galaxy auto-power spectrum and cross-power

spectrum between galaxy over-density and CMB convergence fields, and use these power spec-

tra to estimate two parameters, the redshift dependent galaxy linear bias, b, and amplitude of

cross-correlation, A employing the maximum likelihood method.

We estimate the true redshift distribution from simulated photometric redshift distribution

by the convolution method (section 4.3.1) and compare the estimated photometric power spec-

tra with their theoretical expectations in every tomographic bin. The most important quantity

to accurately recover the true redshift distribution from the convolution method is the precise

estimation of the error functions p(zt − zp|zp). We estimate the error function with sub-percent

accuracy (< 0.25%) by fitting a sum of three Gaussians to p(zt − zp|zp) as shown in Figure
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4.2. We find the sum of Gaussians to accurately capture the peculiarities of the error function

p(zt − zp|zp) like non-Gaussian tails and higher peak in the center. The galaxy auto-power spec-

trum measured from photometric datasets are found to be consistently smaller in every bin with

respect to their fiducial predictions as shown in Figure 4.6. The offsets vary between 2−15% for

simulations with σ(z) = 0.02(1 + z) and between 15−40% for σ(z) = 0.05(1 + z). The measured

cross-power spectra are also biased with smaller deviations (< 5%) for both cases. The measured

power spectra are inconsistent with their expectations due to the scattering of objects from one

redshift bin to other due to photometric redshift errors. This conclusion is consistent with the

fact that deviations are larger in the case of photometric redshift scatter σ(z) = 0.05(1 + z).

To alleviate the differences in the power spectra, we implement the scattering matrix ap-

proach introduced by Zhang et al., 2010 to correct for the effect of redshift bin mismatch of

objects. The scattering matrix describes the fraction of objects in a photometric redshift bin

that comes from different true redshift bins. The power spectra in photometric redshift bins

then transform as a linear combination of power spectra from different true redshift bins (Eqs.

4.14 and 4.15). Zhang et al., 2017 proposed an algorithm based on Non-negative Matrix Factori-

sation method to solve for similar numerical problems, however, this method is computationally

challenging for large number of data points in the power spectra and number of tomographic

bins. To circumvent these challenges, we propose an alternative method for fast and accurate

computation of the scattering matrix based on the reconstruction of the true redshift distribu-

tion by the deconvolution method (see section 4.5). We show in Figure 4.3 the average fractional

errors on reconstruction of the true redshift distribution via the deconvolution method. Figure

4.7 shows that our new method to compute the scattering matrix is robust and only proves

inefficient in the first tomographic bin due to cut in the redshift distribution at boundary z = 0.

With a precise estimation of the scattering matrix, we correct the theoretical power spectra

for the tomographic bins to compare with the estimated galaxy power spectra from simulated

photometric datasets. Figures 4.8 - 4.11 show that scattering matrix methodology makes the

estimated power spectra consistent with the leakage corrected theoretical power spectra.

We quantify the impact of redshift bin mismatch of objects on the estimation of galaxy lin-

ear bias and amplitude of cross-correlation. To estimate parameters after leakage correction, we

transform the estimated photometric power spectra to estimated true power spectra by inverting

the Eqs. 4.14 and 4.15 (as described in section 4.6). Without accounting for the leakage, we

estimate smaller values for the galaxy linear bias, while the amplitude of cross-correlation is esti-

mated higher than its fiducial value of unity. It is important to note here that the estimations of

lower galaxy bias and higher amplitude are not to be generalized for every tomographic analysis.

The offsets suffered by the power spectra and parameters estimated from photometric datasets

in a tomographic study will depend strongly on the photometric redshift error distributions as

well as the redshift distribution of objects. After correcting for leakage by using the scattering

matrix, both parameters are very-well constrained with their expected values. We also study

how tomographic bin sizes affect the estimation of galaxy auto- and cross-power spectra. We

establish that different bin-widths will result in different magnitudes of errors in the power spec-

tra and cosmological parameters.

60



CHAPTER 4. LEAKAGE CORRECTION

The amplitude of cross-correlation is an indicator of the validity of the background cosmo-

logical model. Thus, without correcting for the bias resulting from photometric redshift errors,

it will become inevitable to make wrong inferences when testing cosmological models with to-

mographic analyses. Other estimators frequently used to test the cosmological models, like the

DG (Giannantonio et al., 2016) or EG (Pullen et al. 2016; Zhang et al. 2007) statistics, also em-

ploy the ratio of cross-power spectra to galaxy auto-power spectra and are, hence, proportional

to the cross-correlation amplitude. We study the relationship between the amplitude of cross-

correlation and more familiar σ8 parameter in section 4.7. We show that the offsets suffered by

the amplitude due to scatter of objects are synonymous with the deviations in the σ8 parameter.

With next-generation galaxy surveys like Vera C. Rubin Observatory Legacy Survey of Space

and Time (LSST, Ivezić et al. 2019; LSST Science Collaboration et al. 2009), Euclid (Laureijs

et al., 2011), and Dark Energy Spectroscopic Instrument (DESI) (Fagrelius 2020; Dey et al.

2019b), the tomographic approach will emerge as a powerful tool to put stringent constraints

on the validity of cosmological models. Hence, we propose that the scattering matrix approach

developed and presented in this chapter be strictly used for future tomographic studies.
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Chapter 5

Impact of leakage correction with DESI

Legacy Imaging Survey and Planck

CMB lensing potential

5.1 Overview

In Chapter 4, we quantified using simulations the impact of leakage of objects across redshift

bins on the estimation of power spectra in tomographic cross-correlation measurements. We

observed that without correcting for the redshift bin mismatch, the galaxy auto-power spectrum

and cross-power spectrum between galaxy density and CMB lensing will be biased in every to-

mographic bin, depending on the strength of the photometric redshift errors and the size of the

redshift bin. The biased estimates for the power spectra will ultimately affect the cosmological

parameters, in our case the galaxy linear bias and amplitude of cross-correlation. In this chap-

ter, we apply the leakage correction in the cross-correlation analysis using galaxy catalogues

from the Dark Energy Spectroscopic Instrument Legacy Imaging Survey (DESI-LIS; Dey et al.

2019b) prepared by Hang et al., 2021. Hang et al., 2021 studied the cross-correlation between

Planck CMB lensing and galaxy density field in four tomographic slices covering the redshift

range 0 < z < 0.8 with photometric redshift precision σz
1+z in the range 0.012−0.015. They found

1.5−2.5σ deviations from the expected value of cross-correlation amplitude consistently in all

tomographic bins. However, they do not account for the leakage across tomographic bins, and

in this chapter we re-analyse the DESI-LIS × Planck cross-correlation measurements and apply

the scattering matrix formalism to correct for the tomographic bin mismatch.

The chapter is arranged as follows: we describe the data used in the cross-correlation analysis

in section 5.2 and quantify the fits made to the photometric redshift error distributions in section

5.3. Section 5.4 describes the estimation of true redshift distribution using the convolution and

deconvolution methods. In section 5.5 we gauge the impact of photometric redshift errors on

the estimation of parameters through simulations. We present the impact of leakage correction

on measured power spectra and estimates of cosmological parameters in section 5.6. We also

study the effects of using different CMB lensing potential maps on the inferred cosmological

62



CHAPTER 5. DESI LEGACY IMAGING SURVEY TOMOGRAPHY

parameters as well as translate the influence of leakage correction on to the σ8 parameter. We

finally summarize the findings from this chapter in section 5.7.
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5.2 Data

5.2.1 CMB Lensing Data

The CMB lensing convergence map used in our analysis is described Chapter 3. We briefly

re-iterate the CMB dataset used for analysis in this section. The minimum-variance CMB con-

vergence map (MV map, hereafter) comes from the 2018 Planck data release1 (Planck Collabo-

ration et al., 2020b). It uses the SMICA DX12 CMB maps to reconstruct the lensing potential

from CMB temperature and polarization data covering ∼ 67% of the sky. The Planck data

package provides spherical harmonics coefficients for the lensing convergence map at HEALPix2

(Górski et al., 2005) resolution parameter Nside = 4096, which we downgrade to Nside = 1024 for

our analysis. The data package also provides an estimate of the noise power spectrum Nκκ
ℓ for

the minimum variance map along with a binary map masking the regions of sky not suitable for

analysis.

5.2.2 Legacy Survey Data

We use the galaxy catalogue and photometric redshifts prepared by Hang et al., 2021 from the

Data Release 83 of the Legacy Imaging Survey (Dey et al., 2019b). The Legacy Imaging Survey is

a combination of observations from the Dark Energy Camera Legacy Survey (DECaLS) observed

using the Dark Energy Camera (Flaugher et al., 2015), the Mayall z-band Legacy Survey (MzLS)

observed by the Mosaic3 camera (Dey et al., 2016) and the Beijing-Arizona Sky Survey (BASS)

observed by the 90Prime camera (Williams et al., 2004). The Legacy Survey covers an area of

∼ 17800 deg2 with sources observed in three optical bands (g, r, z) and three WISE (Wright

et al., 2010) bands W1, W2 and W3. The following selection criteria are applied to the data (Hang

et al., 2021)

1. PSF-type objects are excluded which eliminates most stars and quasars.

2. Objects are detected in four bands, i.e. FLUX G|R|Z|W1 > 0.

3. MW TRANSMISSION G|R|Z|W1 are applied to the fluxes for Galactic extinction correction.

4. Magnitude cuts are applied with g < 24, r < 22, and W1 < 19.5.

In addition to above selection criteria, Hang et al., 2021 generates completeness map to

account for the foreground contamination at the map pixel level. The foreground contamina-

tions include masks for bright stars, globular clusters and incompleteness in optical bands. The

galaxies are divided into 4 tomographic bins with redshift intervals (0.0,0.3,0.45,0.6,0.8]. The

galaxy count in each pixel is corrected by the completeness in each pixel, we denote by n the

completeness corrected counts in each pixel. A summary of four tomographic bins including

number of objects and mean density of objects per pixel (corrected for completeness) and per

steradian is given in Table 5.1.

1https://pla.esac.esa.int/#cosmology
2https://healpix.jpl.nasa.gov/
3http://legacysurvey.org/dr8/
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Table 5.1: Physical properties of DESI-LIS tomographic bins. Nobj is the number of objects, n
is the mean number of objects, and median z is the median redshift of the tomographic bins.

Redshift Bin Nobj n [gal pix−1] n [gal str−1] median z

0 < z ≤ 0.3 14363105 2.652 2.655×106 0.21

0.3 < z ≤ 0.45 11554242 2.133 2.136×106 0.38

0.45 < z ≤ 0.6 13468310 2.487 2.490×106 0.51

0.6 < z ≤ 0.8 7232579 1.335 1.337×106 0.66

The galaxy over-density maps for every tomographic bin is build at the HEALPix resolution

parameter Nside = 1024 using the relation

g(n̂) =
n(n̂)−n

n
(5.1)

where n(n̂) is the number of objects in a given pixel and n is the mean number of objects per pixel.

The galaxy over-density maps smoothed with a Gaussian beam of 60′ FWHM (for illustrative

purpose only) are shown in Figure 5.1.
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Figure 5.1: Galaxy over-density maps from four DESI-LIS tomographic bins. The maps have
been smoothed with a Gaussian beam of 60′ FWHM for illustrative purposes.

Hang et al., 2021 also provides an estimate of the photometric redshift of galaxies based on

several spectroscopic observations to assign redshifts in multi-color space. The spectroscopic sur-

veys used to estimate the photometric redshifts of galaxies include GAMA Data Release 2 (Liske
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et al., 2015), BOSS Data Release 12 (Alam et al., 2015), eBOSS Data Release 16 (Ahumada et

al., 2020), VIPERS Data Release 2 (Scodeggio et al., 2018) and DEEP2 (Newman et al., 2013).

Two photometric surveys COSMOS (Ilbert et al., 2009) and DES Y1 redMaGiC (Cawthon et al.,

2018) were also included with the spectroscopic surveys for their highly accurate photometric

redshifts. The galaxy number count maps and the photometric redshift data used in this study

are publicly available at https://gitlab.com/qianjunhang/desi-legacy-survey-cross-correlations.

5.3 Photometric redshift error distribution

Hang et al., 2021 models the redshift error distribution of ∆z = zs−zp (s≡ spectroscopic; p≡ pho-

tometric) as a function of zp, p(zs− zp|zp), for every tomographic bin with a modified Lorentzian

function given by

L(x) = N

[
1 +

(x− x0)2

2aσ2

]−a

(5.2)

where N is the normalization and x0,σ ,a are the parameters to be constrained for every tomo-

graphic bin. The best fit-values to x0,σ ,a for every tomographic bin taken from Hang et al.,

2021 are quoted in Table 5.2.

Table 5.2: The best fit values taken from (Hang et al., 2021) for the parameters defining the
modified Lorentzian fit to the photometric redshift error distribution p(zs − zp|zp).

z x0 σ a

(0.0,0.3] -0.0010 0.0122 1.257

(0.3,0.45] 0.0076 0.0151 1.319

(0.45,0.6] -0.0024 0.0155 1.476

(0.6,0.8] -0.0042 0.0265 2.028

The photometric error distributions compared with the best fit modified Lorentzian function

is shown in Figure 5.2. We note that the modified Lorentzian fit proves to be a good estimate

only near the peak, but fails to capture the tails of the error distribution. We attempt to model

the complete error distribution and find that a sum of 10 Gaussians provide much better fits

in every tomographic bin. It is clearly seen in Figure 5.2, where is shown comparison between

the fitted sum of Gaussians and the modified Lorentzian of Hang et al., 2021. Because of the

striking differences in the fits made to the photometric redshift error distribution, we will study

in section 5.6 the changes incurred by the cosmological parameters when using our sum of 10

Gaussians fit over the modified Lorentzian model.

5.4 Estimation of true redshift distribution

In this section, we present two method to estimate the true redshift distribution. The more com-

monly used convolution method will be used as the simple method of estimating the theoretical

power spectra. We will use the true redshift distribution estimated from the deconvolution

method for computation of the scattering matrix and correct for the leakage of objects across
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Figure 5.2: Photometric redshift error function (shown in red solid curve) compared with the
best-fit modified Lorentzian function obtained by Hang et al., 2021 (black dashed curve) and
the sum of 10 Gaussians (blue solid curve).

redshift bins (as described in Chapter 4).

5.4.1 Using convolution method

The true redshift distribution for tomographic bin i can be computed using the relation (section

4.3.1)

dNi

dzt
=
∫

dzp
dNi(zp)

dzp
pi(zs − zp|zp) (5.3)
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where
dNi(zp)

dzp
is the observed photometric distribution of galaxies in the ith redshift bin and

pi(zs − zp|zp) is the fit made to the corresponding photometric redshift error distribution (from

section 5.3). In Figure 5.3, we show the galaxy redshift distributions for every tomographic bins

estimated using Eq. (5.3). The left panel shows the redshift distributions estimated using the

modified Lorentzian model and the right panel presents the distributions estimated using our

sum of Gaussians approach.

0.0 0.2 0.4 0.6 0.8 1.0
z

0.0

0.2

0.4

0.6

0.8

1.0

p(
z)

CMB Lensing
DESI

0.0 0.2 0.4 0.6 0.8 1.0
z

0.0

0.2

0.4

0.6

0.8

1.0

p(
z)

CMB Lensing
DESI

Figure 5.3: The redshift distribution for every tomographic bin shown in blue lines estimated
using (left:) modified Lorentzian and (right:) sum of 10 Gaussians fit to the photometric redshift
error distribution. The red line marks the CMB lensing kernel and the green line shows the total
redshift distribution of galaxies. The orange vertical dashed lines mark the boundaries for the
four tomographic bins. The CMB lensing kernel and redshift distributions are all normalized to
unit maximum.

5.4.2 Using deconvolution method

We can also estimate the true redshift distribution by deconvoluting the observed full photo-

metric redshift distribution (see section 4.3.2) with the error distribution p(zp − zs|zs) through

the relation

dN
dzt

= F−1
[ F [

dN(zp)
dzp

]

F [p(zp − zs|zs)]

]
(5.4)

where F and F−1 represent the Fourier and inverse Fourier transforms, respectively.

We compute the error distribution p(zp−zs|zs) from the spectroscopic sample used to estimate

the photometric redshifts of galaxies. As we can see in the left panel of Figure 5.4, fit made with a

sum of 9 Gaussians very closely approximates the observed error distribution p(zp−zs|zs). In the

right panel of Figure 5.4, we show the true redshift distribution estimated by the deconvolution

method (i.e. using Eq. 5.4) compared with the observed photometric redshift distribution.
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Figure 5.4: Left : Error distribution p(zp− zs|zs) fit of a sum of 9 Gaussians. Right : Photometric
redshift distribution of galaxies (red dashed curve) compared with the true redshift distribution
estimated using deconvolution method (blue solid curve).

5.5 Simulations

To get an insight into how the observed redshift errors will impact the parameters: galaxy linear

bias and amplitude of cross-correlation, we use the publicly available FLASK code (Xavier et al.,

2016), similar to section 4.2, and create 300 Monte Carlo simulations of correlated log-normal

galaxy density field with DESI-LIS observed physical properties quoted in Table 5.1 and Planck

CMB lensing convergence field. We assign true redshifts zt to galaxies in our simulations following

the estimate of the true redshift distribution obtained using the deconvolution method (shown in

the right panel of Figure 5.4). We generate photometric redshifts using the observed photometric

error distribution p(zp − zs|zs) shown in the left panel of Figure 5.4. The redshifts generated in

this way closely follows the properties of the real DESI-LIS galaxy catalogue. We divide the

simulated galaxy catalogue into 5 redshift bins with intervals (0.0,0.3,0.45,0.6,0.8,1.0]. We note

that due to photometric redshift errors, some objects from the redshift bin 0.6 < z < 0.8 will also

scatter to redshifts z > 0.8. Hence, to account for the lost objects outside the redshift boundary

at z = 0.8, we also include the redshift bin 0.8 < z < 1.0 when correcting for leakage. The fiducial

power spectra necessary for simulations are computed using Eq. (2.8) with the redshift dependent

galaxy bias b(z) = 1 + b0−1
D(z) , with b0 = 1.3.

From the simulated galaxy density and CMB lensing convergence maps, we estimate their

full-sky cross-power spectrum and galaxy auto-power spectrum following the MASTER method

described in section 2.3. In the top panel of Figure 5.5, we show the average galaxy auto-power

spectra from 300 simulations for four tomographic bins. The shot noise contributions are sub-

tracted from the average galaxy auto-power spectra. The bottom panel of Figure 5.5 presents

the average cross-power spectra from 300 simulations. The red solid lines are the theoretical

power spectra estimated using Eq. (5.3) without accounting redshift bin mismatch. The green

dashed lines are the theoretical power spectra corrected for redshift bin mismatch using Eqs. 4.14
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Figure 5.5: Top: Galaxy auto-power spectra and bottom: cross-power spectra averaged from 300
simulations for four tomographic bins. The red solid lines are the fiducial expectation estimated
through Eq. (5.3) and the green dashed lines the theoretical power spectra corrected for the
redshift bin mismatch. The error bars on the data points are estimated from 300 simulations
using Eq. 4.11.
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Figure 5.6: Relative errors on the average (top) galaxy auto-power spectra and (bottom) cross-
power spectra without correcting for the redshift bin mismatch (blue circles) and after correcting
(red squares). The error bars on the data points are estimated from 300 simulations using
Eq. 4.11.
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and 4.15.

The top panel of Figure 5.6 shows the relative differences between measured and theoretical

auto- and cross-power spectra. There are shown the differences for theoretical spectra without

correcting for the redshift bin leakage (i.e. redshift distribution given by Eq. 5.3) as well as for

the spectra with the correction for the leakage (using Eqs. 5.6 and 5.7). For the former the

galaxy auto-power spectra show deviations between 5−25% due to photometric redshift errors.

For each tomographic bin, the average observed galaxy auto-power spectrum is higher than

their theoretical expectations, except for the redshift bin 0.35 ≤ z < 0.4 where the average power

spectrum is ∼ 15% lower. The leakage corrected theoretical galaxy auto-power spectra for each

tomographic bin are completely consistent with measured power spectra. It is important to note

the difference in the behaviour of the galaxy auto-power spectra between DESI-LIS simulations

and the LSST simulations shown in Chapter 4. With LSST simulations the theoretical galaxy

auto-power spectra before leakage correction were all larger than the measured power spectra,

in contrast to that shown in Figure 5.5. This difference stems from the different behaviours of

the photometric redshift error distributions when correcting for redshift scatters. Hence, it is

of utmost importance to accurately quantify the error distributions when extracting the power

spectra in cross-correlation analyses. In the bottom panel of Figure 5.6, we show the relative

errors acquired by the cross-power spectra. Similar to the LSST simulations in Chapter 4, the

cross-power spectra do not show significant variations due to leakage of objects across redshift

bins.

5.5.1 Parameters
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Figure 5.7: Left : Estimates for galaxy linear bias b(z) before (blue circles) and after (red squares)
correction for leakage. The black dashed lines marks the true evolution of galaxy linear bias
(with b0 = 1.3) used for simulations. Right : Deviation between the estimated amplitude of cross-
correlation from its true value (A = 1) in terms of standard deviation of the amplitude.

From the average power spectra measured from simulations, we estimate galaxy linear bias
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and amplitude of cross-correlation, using the Maximum Likelihood approach described in section

2.4. In the left panel of Figure 5.7, we compare the galaxy linear bias parameter before and

after correcting the measured power spectra. The error bars have been re-scaled to report the

errors for a single realisation, thus making it convenient to compare with actual DESI-LIS ×
Planck data analysis in section 5.6. The black dashed line represents the fiducial evolution of

galaxy bias used for simulations, i.e. b(z) = 1+ b0−1
D(z) with b0 = 1.3. Before leakage correction, the

galaxy bias are estimated higher with 7−42σ deviations in three out of four tomographic bins.

The second redshift bin gives a ∼ 30σ lower estimate of the galaxy bias. Such large deviations

on the galaxy linear bias are due to very small errors on the estimated bias tightly constrained

by the auto-power spectrum. In the right panel of Figure 5.7, we show the deviation between

the estimated amplitude of cross-correlation from its true value (A = 1) in terms of standard

deviation of the amplitude, from the four tomographic bins with error bars re-scaled to single

realisation. The amplitude turns out to be lower than expectations with ∼ 0.5σ deviation in the

third bin and ∼ 3σ deviation for the fourth bin. The amplitude is ∼ 2σ higher in the second

tomographic bin. The amplitude of cross-correlation closely follows its expected value of unity

after accounting for leakage across redshift bins. Thus, based on the results from our simulations

we can expect the estimated amplitude to be smaller, except second redshift bin, than its true

value if power spectra are not corrected for the photometric redshift scatter.

5.6 Results: DESI-LIS × Planck

We bin the galaxy auto-power spectra and cross-power spectra between DESI-LIS photometric

galaxy catalogues and Planck minimum-variance CMB lensing potential map with binwidth

∆ℓ = 10 in the multipole range 10 < ℓ < 500, following the analysis choice of Hang et al., 2021.

We use the Maximum likelihood Estimation method (described in section 2.4) to estimate two

parameters, galaxy linear bias b and amplitude of cross-correlation A from the cross-correlation

measurements. We use flat priors b ∈ [0,10] and A ∈ [−5,5] for the estimation of parameters

while the remaining cosmological parameters are kept constant at flat ΛCDM cosmology with

best-fit values given in Planck Collaboration et al., 2020a. In this section, we quantify the change

in the parameters due to leakage across redshift bins.

5.6.1 Before leakage correction

Hang et al., 2021 estimated the parameters by adopting a two bias parameter model for the

linear and non-linear regimes separately:

Cgg,th
ℓ = b2

1Clin,th
ℓ + b2

2 ∆Cnl,th
ℓ (5.5)

where Clin,th
ℓ and the non-linear correction ∆Cnl,th

ℓ are computed using the CAMB4(Lewis et al.,

2000) software. In our analysis, we use a redshift dependent bias model through b(z) = 1+ b0−1
D(z) ,

where D(z) is the growth factor computed through Eq. 4.2.

First we estimate parameters assuming theoretical power spectra without correction for the

redshift bin mismatch (i.e. with redshift distribution estimated using Eq. 5.3) and the photo-

4https://camb.info/
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Table 5.3: Best fit values for the galaxy linear bias b and amplitude of cross-correlation A
estimated using theoretical power spectra without redshift bin leakage correction.. The first set
of parameters b1 and A are taken from Hang et al., 2021. The second and third sets of b and
A are estimated using modified Lorentzian (with parameters from Hang et al., 2021) and sum
of Gaussians fit to the error distribution p(zs − zp|zp), respectively. χ2

r is the reduced chi-square
values for the cross-power spectrum with ν = 47 degrees of freedom.

Bin From Hang et al. This work

Modified Lorentzian Sum of Gaussians

b1 A b A χ2
r b A χ2

r

(0.0,0.3] 1.25+0.01
−0.01 0.91+0.05

−0.05 1.197+0.003
−0.003 0.891+0.054

−0.053 1.621 1.437+0.004
−0.003 0.802+0.046

−0.046 1.177

(0.3,0.45] 1.56+0.02
−0.02 0.80+0.04

−0.04 1.513+0.004
−0.004 0.850+0.044

−0.044 2.126 1.731+0.004
−0.004 0.780+0.040

−0.041 2.150

(0.45,0.6] 1.53+0.01
−0.01 0.94+0.04

−0.04 1.523+0.004
−0.004 0.954+0.042

−0.042 1.450 1.790+0.005
−0.004 0.847+0.037

−0.036 1.440

(0.6,0.8] 1.83+0.02
−0.02 0.91+0.04

−0.04 1.853+0.005
−0.005 0.901+0.038

−0.038 1.493 2.220+0.006
−0.006 0.812+0.033

−0.033 1.509
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Figure 5.8: Cross-power spectrum measured from four DESI-LIS tomographic bins. The green
solid line is the theoretical power spectrum computed following our best-fit estimates of param-
eters b and A using the modified Lorentzian fit to the error distribution. The orange dashed
line is the theoretical power spectrum corresponding to the sum of Gaussians fit to the error
distribution. The error bars are computed from the covariance matrix used in the likelihood
function (section 2.4 with best-fit values of b and A from Table 5.3.
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metric redshift error distribution modelled by modified Lorentzian function of Hang et al., 2021.

In this case, we expect the values of the galaxy bias b(z) to be close by the value of b1 estimated

by Hang et al., 2021. Since the sum of 10 Gaussians provides a better fit to p(zs − zp|zp), we

also estimate parameters using our sum of Gaussians fit to the error distribution in Eq. 5.3. We

present in Table 5.3, the values of parameter b1 and cross-correlation amplitude A as quoted in

table 3 of Hang et al., 2021 and compare it with our best-fit estimates of b and A computed using

the modified Lorentzian (with parameters from Hang et al., 2021) and sum of Gaussians fit to the

error distribution p(zs − zp|zp), respectively. The amplitude of cross-correlation computed with

modified Lorentzian fit are consistent with estimations of Hang et al., 2021 within 1σ errors.

The galaxy bias also follows the values of b1 from Hang et al., 2021 as expected, with maximum

difference occurring in the first tomographic bin. The estimated cross-correlation amplitude is

in tension at 1.5−2.5σ with respect to its fiducial value of unity.

The values of parameters when computed using the sum of Gaussians approach, differ signif-

icantly from the previous estimations, producing consistently smaller values of cross-correlation

amplitude and higher values of the galaxy linear bias. The tension in the amplitude increase

to 4.3−5.6σ with sum of Gaussians approach. We quote the reduced chi-square values for the

measured cross-power spectrum with ν = 49−2 = 47 degrees of freedom in Table 5.3. In Figure

5.8 we show the measured cross-power spectrum and the fiducial power spectrum computed

using the values of b and A quoted in Table 5.3 for the four tomographic bins. Both modified

Lorentzian and sum of Gaussians approaches yield similar results in their fit to the cross-power

spectrum and chi-square values, with striking differences in the values of parameters b and A.

The change in parameters are solely due to the differences in modelling the photometric redshift

error distributions. Since, the sum of Gaussians model provide a better fit to the photometric

redshift error distribution, we treat the parameters computed under this model as our baseline

results when correcting for redshift bin mismatch.

5.6.2 With leakage correction

In Chapter 4 and section 5.5, we have shown that the parameters estimated in a tomographic

study will be biased unless the leakage of objects across redshift bins is accounted through scat-

tering matrix. We prepare the galaxy over-density map for the new tomographic bin 0.8< z< 1.0

in a similar fashion to section 5.2 and measure the galaxy auto-power spectrum and cross-power

spectrum with minimum-variance Planck CMB lensing convergence map. The addition of this

new redshift bin is necessary for correct estimation of the scattering matrix as explained in section

5.5. In the left panel of Figure 5.9, we show the scattering matrix computed for the DESI-LIS

photometric catalogue following the methodology described in section 4.5. In the right panel

of Figure 5.9 is the mean scattering matrix estimated from 300 Monte Carlo DESI-LIS sim-

ulations described in section 5.5. Since we used the DESI-LIS photometric error distribution

in our simulations, the similar structure of the scattering matrix from the observed DESI-LIS

datasets and from our simulations indicate that the scattering matrix shown in the left panel

Figure 5.9 will be robust in correcting the power spectra of the leakage for every tomographic bin.

The measured galaxy auto- and cross-power spectra can finally be corrected for the redshift
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Figure 5.9: Left : The scattering matrix estimated for DESI-LIS data. Right : The mean scatter-
ing matrix estimated from 300 Monte Carlo simulations of DESI-LIS data (described in section
5.5). zp and zt bins represent the photometric and true redshift bins, respectively.

bin leakage using the relations

Ĉgg,tr = PT−1
Ĉgg,phP−1 (5.6)

Ĉκg,tr = PT−1
Ĉκg,ph (5.7)

where P and PT are the estimated scattering matrix and its transpose. Ĉgg,ph and Ĉκg,ph are the

power spectra measured from DESI-LIS catalogue and its cross-correlation with Planck CMB

lensing map (power spectra presented in section 5.6.1). Ĉgg,tr and Ĉκg,tr represents the estimates

of the true power spectra. We use Ĉgg,tr and Ĉκg,tr to estimate parameters after correction for

redshift bin mismatch of objects, for reasons described in section 4.6. To compute the parameters

from the estimates of the true power spectra using Maximum Likelihood Estimation method, we

use the fiducial true power spectrum template for each tomographic bin computed using Eqs.

(4.17) and (4.18) with redshift distribution dNi(zt)
dzt

given by Eqs. (5.4) and (4.8). In Table 5.4, we

compare the parameters b and A computed before and after leakage correction for our baseline

results.

As expected from our simulations in section 5.5, we observed significant reduction in the

galaxy linear bias after leakage correction, expect for the second tomographic bin where the

simulations predicted an increase in the galaxy bias after correction. As a consequence of degen-

eracy between galaxy bias and the amplitude for cross-power spectrum, smaller values of galaxy

bias result in increase of the amplitude of cross-correlation by ∼ 2σ for the first and third tomo-

graphic bin and by ∼ 3σ for the last tomographic bin making it fully consistent with the ΛCDM

predictions. The amplitude in the second redshift bin, however, does not show any substantial

variation after correction. We also estimate better χ2-values for the cross-power spectra after

leakage correction. Although, the galaxy linear bias and cross-correlation amplitude estimated

taking into account the redshift bin mismatch turn out to be comparable to the estimates by

Hang et al., 2021, it is worth to keep in account the differences in modelling of photometric red-

shift error distributions as depicted in Figure 5.2. In Figure 5.10, we show the leakage corrected
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Table 5.4: Best fit values for the galaxy linear bias b and amplitude of cross-correlation A for
every tomographic bin estimated with and without taking into account leakage correction in the
analysis. χ2

r is the reduced chi-square values for the cross-power spectrum with ν = 47 degrees
of freedom.

Bin From Hang et al. This work

Before correction After correction

b1 A b A χ2
r b A χ2

r

(0.0,0.3] 1.25+0.01
−0.01 0.91+0.05

−0.05 1.437+0.004
−0.003 0.802+0.046

−0.046 1.177 1.189+0.004
−0.003 0.916+0.060

−0.060 1.004

(0.3,0.45] 1.56+0.02
−0.02 0.80+0.04

−0.04 1.712+0.004
−0.004 0.786+0.041

−0.041 2.150 1.594+0.004
−0.004 0.797+0.054

−0.054 1.367

(0.45,0.6] 1.53+0.01
−0.01 0.94+0.04

−0.04 1.819+0.005
−0.005 0.838+0.036

−0.036 1.440 1.581+0.004
−0.004 0.926+0.049

−0.049 0.805

(0.6,0.8] 1.83+0.02
−0.02 0.91+0.04

−0.04 2.159+0.006
−0.006 0.815+0.033

−0.033 1.509 1.768+0.004
−0.004 0.960+0.051

−0.051 1.213
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Figure 5.10: Cross-power spectrum measured from four DESI-LIS tomographic bins with MV
map after leakage correction. The orange dashed line is the theoretical power spectrum computed
with the best-fit values of parameters quoted in Table 5.4. The error bars are computed from
the covariance matrix used in the likelihood function (section 2.4 with best-fit values of b and A
from Table 5.4.

cross-power spectra for the four tomographic bins and the corresponding theoretical fits using

the best-fit parameters mentioned in Table 5.4.

Having estimates of the galaxy bias in different redshift bins we can estimate b0 parameter,
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which can be interpreted as galaxy bias at redshift z = 0, in our model of redshift dependence of

the galaxy bias b(z) = 1 + b0−1
D(z) . We find b0 = 1.581±0.008 and 1.386±0.008 without and with

leakage correction, respectively. In the left panel of Figure 5.11 we show the estimated galaxy

linear bias for the four tomographic bins considered in the analysis. The blue circles and red

squares represent the galaxy bias estimates without and with correction for leakage of objects

across redshift bins. The black dashed and solid lines represent the resulting redshift evolution

of galaxy bias with and without leakage correction, respectively. The fit of data points to the

best-fitted models is rather poor as the data go up steeper with redshift than lines for our red-

shift dependent galaxy bias model. Accounting for the scatter of objects between redshift bins

leads to significantly lower value of b0 and will result in notably different inferences about the

relation between the dark matter and luminous matter.

In the right panel of Figure 5.11, we present the the deviations between the estimated

amplitude of cross-correlation from its true value (A = 1) in terms of standard deviation of the

amplitude, from the four tomographic bins. By countering the impact of redshift bin mismatch,

we reduce the tension in amplitude from 4−6σ to ∼ 2σ , with complete agreement within errors

for the last tomographic bin.
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Figure 5.11: Left : Estimates for galaxy linear bias b(z) with (red squares) and without (blue
circles) taking into account the correction for leakage. The black solid and dashed lines represent
the fiducial redshift evolution of galaxy bias for before and after leakage correction scenarios, re-
spectively, with b0 estimated using Maximum Likelihood Estimation. Right : Deviation between
the estimated amplitude of cross-correlation from its true value (A = 1) in terms of standard
deviation of the amplitude.

5.6.3 Using different CMB lensing potential maps

Although accounting for leakage improves the deviations observed on the amplitude of cross-

correlation for our baseline analysis, there still remains a ∼ 2σ tension with respect to the

prediction of the standard cosmological model. There are a number of systematics that we

explored in chapter 3 but have not considered with DESI-LIS datasets, since the goal of this
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Figure 5.12: Cross-power spectrum measured from four DESI-LIS tomographic bins with SZ-
deproj map after leakage correction. The orange dashed line is the theoretical power spectrum
computed with the best-fit values of parameters quoted in Table 5.4. The error bars are computed
from the covariance matrix used in the likelihood function (section 2.4 with best-fit values of b
and A from Table 5.5.

analysis was to convey the importance of leakage correction on the estimation of cosmological

parameters. However, one of the important conclusions from chapter 3 is that different CMB

lensing convergence maps produce significantly different values of cross-correlation amplitude

parameter. Hence, in this section, we compare estimates of the galaxy bias and cross-correlation

amplitude obtained using also other provided by the Planck team CMB lensing convergence

maps i.e. Sunyaev-Zeldovich deprojected (SZ-deproj) and temperature only (TT) convergence

maps. The minimum-variance (MV) map used in the baseline analysis combines the Planck

temperature and polarization measurements through a minimum-variance approach, whereas the

TT map is reconstructed from only the Planck temperature measurements. The SZ-deproj map

further removes the regions of sky with strong Sunyaev-Zeldovich sources from the temperature

measurements used for reconstruction of the lensing convergence map.

In Table 5.5 we show the best-fit values of parameters b and A estimated using Maximum

Likelihood Estimation method for cross-correlation of DESI-LIS tomographic bins with SZ-

deproj and TT CMB lensing convergence maps. The parameters estimated with the SZ-deproj

map are found to be ∼ 1σ higher in the second and ∼ 2σ for the fourth tomographic bin, in

comparison with MV map. With SZ-deproj map, the amplitude in the last tomographic bin is

estimated at A = 1.043±0.059, in agreement with the ΛCDM expectations of unity. However, the
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Figure 5.13: Cross-power spectrum measured from four DESI-LIS tomographic bins with TT
map after leakage correction. The orange dashed line is the theoretical power spectrum computed
with the best-fit values of parameters quoted in Table 5.4. The error bars are computed from
the covariance matrix used in the likelihood function (section 2.4 with best-fit values of b and A
from Table 5.5.

Table 5.5: Galaxy linear bias and cross-correlation amplitude from Maximum Likelihood Es-
timation from DESI-LIS tomographic bins (taking into account leakage correction) using joint
likelihood functions for SZ-deproj and TT-only convergence maps.

Bin SZ-deproj TT

b A χ2
r b A χ2

r

(0.0,0.3] 1.190+0.003
−0.003 0.914+0.069

−0.069 2.720 1.189+0.003
−0.003 0.875+0.066

−0.067 1.781

(0.3,0.45] 1.596+0.004
−0.004 0.831+0.062

−0.062 5.095 1.595+0.004
−0.004 0.823+0.060

−0.060 3.706

(0.45,0.6] 1.583+0.004
−0.004 0.910+0.057

−0.056 4.266 1.582+0.004
−0.004 0.967+0.054

−0.054 1.748

(0.6,0.8] 1.772+0.004
−0.004 1.043+0.059

−0.059 8.815 1.769+0.004
−0.004 1.009+0.056

−0.057 3.218

reduced χ2 values for SZ-deproj map are consistently poorer than the MV map, due to increased

fluctuations in the measured cross-power spectra. The TT map, on the other hand, removes

the tension on the cross-correlation amplitude for the third and fourth tomographic bins. The

amplitude for the second bin is also found to be ∼ 0.6σ higher than the MV map. Figures 5.12

and 5.13 show the cross-power spectra for the four tomographic bins with SZ-deproj and TT
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maps, respectively, after correction for redshift bin mismatch. The orange dashed lined are the

theoretical fits using the best-fit parameters mentioned in Table 5.4. The overall estimates of the

cross-correlation amplitude for SZ-deproj and TT maps show better agreement with expected

value of one than estimate for MV map, however, the reduced χ2 values from SZ-deproj and TT

maps indicate poorer fit of the theoretical power spectra to data than for MV map.

5.6.4 Estimation of σ8 parameter
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Figure 5.14: Left : Comparison of σ8 parameter computed using cross-correlation measurement
with MV map before and after leakage correction Right : Comparison of σ8 parameter after
leakage correction computed from cross-correlations with MV, SZ-deproj and TT CMB lensing
maps. The dashed line represents the redshift evolution of the σ8 parameter for our fiducial
cosmology.

The amplitude of cross-correlation can be translated to the σ8 parameter as suggested by

Peacock and Bilicki, 2018. We follow the procedure from section 4.7 to estimate the σ8 parameter

from the cross-correlation measurements between DESI-LIS galaxy survey and Planck CMB

lensing potential using Eq. (4.19). We show in the left panel of Figure 5.14, the impact of

leakage correction on σ8 parameter. The σ8 parameter before leakage correction is estimated

from our baseline analysis using the sum of Gaussians fit to the error distribution. The black

dashed line is the redshift evolution of σ8 for our fiducial cosmology. We observe improvement

in the σ8 values after correcting for leakage, similar to the amplitude of cross-correlation. In the

right panel of Figure 5.14, we compare the σ8 parameter computed from the cross-correlation

measurements with MV, SZ-deproj and TT CMB lensing maps. As with the amplitude of cross-

correlation, the best-fit values of the σ8 parameter estimated from cross-correlations with TT

and SZ-deproj maps show better agreement with expected values for the fiducial ΛCDM model.

The TT map provides completely consistent values of σ8 with expectations for the last two

higher redshift bins.
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5.7 Summary

In this chapter, we have performed the cross-correlation analysis between minimum-variance

CMB convergence map from Planck Collaboration et al., 2020b and photometric galaxy cata-

logues from the Data release 8 of the Legacy Imaging Survey prepared by Hang et al., 2021.

The galaxy density field is divided in to four redshift slices covering the range 0 < z < 0.8, with

photometric redshift precision σz
1+z in the range 0.012− 0.015. Hang et al., 2021 estimated a

1.5− 2.5σ tension in the value of cross-correlation amplitude from all tomographic bins with

respect to the standard cosmological model.

Hang et al., 2021 approximated the photometric redshift error distribution with a modified

Lorentzian distribution. We show that this model does not appropriately capture the tails of the

error distribution. In our baseline analysis, we adopt a sum of Gaussians model and make a pre-

cise fits to the redshift error distributions. We find that our sum of Gaussians model gives ∼ 2σ

smaller values of cross-correlation amplitude, and significantly higher estimates of the galaxy

linear bias than Hang et al., 2021. This clearly shows that precise modelling of the redshift error

distributions plays a crucial role in the estimation of cosmological parameters.

We have shown in Chapter 4 that tomographic analyses will produce biased estimates of

parameters due to redshift bin mismatch of objects. We correct for this scatter of objects across

redshift bins using our scattering matrix formalism developed in Chapter 4. For our baseline

analysis with sum of Gaussians fit to the redshift error distributions, we find a ∼ 2− 3σ im-

provement in the amplitude of cross-correlation after correction for leakage. We show through

simulations that the scattering matrix used to correct the power spectra for the redshift bin

mismatch also gives a ∼ 2− 3σ improvement in cross-correlation amplitude. The correction

reduces the tension from 4− 5σ to ∼ 2σ for three tomographic bins, whereas alleviating the

tension for the last bin. We also estimate galaxy linear bias and cross-correlation amplitude us-

ing Sunyaev-Zeldovich deprojected (SZ-deproj) and temperature-only (TT) reconstructed CMB

lensing convergence maps. The SZ-deproj and TT maps produce 1−2σ higher values of ampli-

tude than MV map, in agreement with the conclusion from Chapter 3, but with poorer χ2 values.

The TT map completely resolves the deviation on the amplitude for last two tomographic bins.

Finally, we estimate the impact of leakage correction on the σ8 parameter and find that the

leakage corrected power spectra yields better estimates, reducing the tension from 4− 5σ to

∼ 1σ for three out of four redshift bins. The σ8 −Ωm tension is one of the biggest challenges of

the modern cosmology. We conclude that an accurate modelling of the photometric redshift error

distribution and accounting for the scatter of objects across redshift bins due to photometric

redshift errors are very important for unbiased estimations of the cosmological parameters. In

this light, it becomes crucial to include scattering matrices in cross-correlation analyses with

future datasets.
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Chapter 6

Summary of the thesis

An overview of each of the preceding chapters constituting the backbone of this thesis can

be found in Section 1.5. Here we summarize the most important results and conclusions of the

studies presented in the thesis.

The main goal of the collection of works in this thesis was to investigate the role of various

systematics errors on testing cosmological models through cross-correlation measurements be-

tween CMB lensing potential and tracers of the large scale structure, with particular attention

paid to tomographic cross-correlation analyses. The important contributions from this thesis

are:

1. First cross-correlation measurements between Planck CMB lensing potential map and

photometric redshift galaxy catalogues from the Herschel Extragalactic Legacy Project

(HELP).

2. The robust modelling of various systematics that affect the redshift distribution and num-

ber density of objects in a galaxy survey (see Chapter 3). The systematics such as

photometric calibration errors, catastrophic errors, magnification bias, etc will bias the

cross-correlation measurements. We provide mitigation strategies for these galaxy survey

systematics through Chapter 3.

3. The redshift bin mismatch of objects due to photometric redshift errors can cause biased

estimation of cosmological parameters from cross-correlation analysis. This will lead to

apparent tensions on cosmological parameters like σ8. The incurred bias depends on

the distribution of photometric redshift errors, the redshift distribution of objects and

the size of the redshift bin. We present one of the first tests of performance of the

tomographic cross-correlation analysis based on Monte Carlo simulations. In the case

of LSST survey and photometric redshift error σ0 = 0.02, the bias is of order of 1σ for the

cross-correlation amplitude or σ8 parameter. The bias can be corrected using scattering

matrix approach developed in Chapter 4. Although the scattering matrix formalism on its

own was introduced by Zhang et al., 2010, we propose in the thesis a new, computationally

faster method of estimation of the matrix well-suited for analysis of large datasets from

the upcoming galaxy surveys.

4. Application of the scattering matrix approach in the cross-correlation analysis for the
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Planck lensing map and DESI-LIS catalogue (Hang et al., 2021) results in higher values

by around 1σ of estimated σ8 parameter showing better agreement with expectations from

the ΛCDM model (Chapter 5).

5. Different CMB lensing potential maps namely, minimum variance reconstruction from the

Planck CMB temperature and polarization measurements, Sunyaev-Zeldovich deprojected

and temperature only reconstruction of the lensing potential, yields slightly different sets

of amplitude of cross-correlation. The differences are of order of 0.5−1σ for both of the

analysed catalogues, i.e. HELP and DESI-LIS. They indicate how big are uncertainties

related with possible systematic errors of the CMB lensing maps.

The tomographic cross-correlations have been employed on several occasions to estimate

cosmological parameters and they consistently report lower than expected value of σ8 or S8

parameter than expected in ΛCDM model (White et al. 2022; Pandey et al. 2022; Chang et al.

2022; Sun et al. 2022; Krolewski et al. 2021; Hang et al. 2021; Peacock and Bilicki 2018). The

tensions on cosmological parameters have been a major motivation towards alternative models

of our Universe. The results of this thesis indicate that the redshift bin mismatch of objects

in tomographic analysis will drive the estimated parameters away from their true values. The

shift in the parameters will depend on the photometric redshift error distributions and the

redshift distribution of objects. Thus, for an unbiased estimation of cosmological parameters

from future tomographic cross-correlation measurements, it is of utmost importance to carry

out the analysis taking into account the redshift bin mismatch of objects along with other

systematics. This thesis provides a robust, novel and computationally fast scattering matrix

approach, thoroughly tested using a suite of realistic Monte Carlo simulations, for unbiased

estimation of cosmological parameters. This approach and methods of correction for systematic

errors presented in the thesis will be especially well-suited and very valuable for the analysis of

large datasets from upcoming generation of multi-wavelength photometric galaxy surveys such

as LSST, Euclid (Laureijs et al., 2011), Nancy Grace Roman Space Telescope (Spergel et al.,

2013), and Dark Energy Spectroscopic Instrument (DESI, Dey et al. 2019a).
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Doré, O., Bock, J., Ashby, M., Capak, P., Cooray, A., de Putter, R., Eifler, T., Flagey, N.,

Gong, Y., Habib, S., Heitmann, K., Hirata, C., Jeong, W.-S., Katti, R., Korngut, P.,

Krause, E., Lee, D.-H., Masters, D., Mauskopf, P., . . . Zemcov, M. (2014). Cosmology

with the SPHEREX All-Sky Spectral Survey. arXiv e-prints, Article arXiv:1412.4872,

arXiv:1412.4872. https://doi.org/10.48550/arXiv.1412.4872

Doux, C., Penna-Lima, M., Vitenti, S. D. P., Tréguer, J., Aubourg, E., & Ganga, K. (2018).
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Górski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., &

Bartelmann, M. (2005). HEALPix: A Framework for High-Resolution Discretization and

Fast Analysis of Data Distributed on the Sphere. ApJ, 622 (2), 759–771. https://doi.

org/10.1086/427976

Goto, T., Szapudi, I., & Granett, B. R. (2012). Cross-correlation of WISE galaxies with the

cosmic microwave background. MNRAS, 422 (1), L77–L81. https://doi.org/10.1111/j.

1745-3933.2012.01240.x

Gunn, J. E., Siegmund, W. A., Mannery, E. J., Owen, R. E., Hull, C. L., Leger, R. F., Carey,

L. N., Knapp, G. R., York, D. G., Boroski, W. N., Kent, S. M., Lupton, R. H., Rockosi,

C. M., Evans, M. L., Waddell, P., Anderson, J. E., Annis, J., Barentine, J. C., Bartoszek,

L. M., . . . Wang, S.-i. (2006). The 2.5 m Telescope of the Sloan Digital Sky Survey. AJ,

131 (4), 2332–2359. https://doi.org/10.1086/500975

Gupta, N., & Reichardt, C. L. (2021). Mass Estimation of Galaxy Clusters with Deep Learning

II. Cosmic Microwave Background Cluster Lensing. ApJ, 923 (1), Article 96, 96. https:

//doi.org/10.3847/1538-4357/ac32d0

90

https://doi.org/10.1088/0004-637X/707/2/916
https://doi.org/10.1086/178173
https://doi.org/10.1088/0004-6256/150/5/150
https://doi.org/10.1086/670067
https://doi.org/10.1086/310006
https://doi.org/10.1038/162680a0
https://doi.org/10.1038/162680a0
https://doi.org/10.1103/PhysRev.74.505.2
https://doi.org/10.1093/mnras/stv2678
https://doi.org/10.1103/PhysRevD.98.123526
https://doi.org/10.1103/PhysRevD.98.123526
https://doi.org/10.1086/427976
https://doi.org/10.1086/427976
https://doi.org/10.1111/j.1745-3933.2012.01240.x
https://doi.org/10.1111/j.1745-3933.2012.01240.x
https://doi.org/10.1086/500975
https://doi.org/10.3847/1538-4357/ac32d0
https://doi.org/10.3847/1538-4357/ac32d0


BIBLIOGRAPHY

Guth, A. H. (1981). The Inflationary Universe: A Possible Solution to the Horizon and Flatness

Problems (L.-Z. Fang & R. Ruffini, Eds.). Phys. Rev. D, 23, 347–356. https://doi.org/

10.1103/PhysRevD.23.347

Han, J., Ferraro, S., Giusarma, E., & Ho, S. (2019). Probing gravitational lensing of the CMB

with SDSS-IV quasars. MNRAS, 485 (2), 1720–1726. https://doi.org/10.1093/mnras/

stz528

Hang, Q., Alam, S., Peacock, J. A., & Cai, Y.-C. (2021). Galaxy clustering in the DESI Legacy

Survey and its imprint on the CMB. MNRAS, 501 (1), 1481–1498. https://doi.org/10.

1093/mnras/staa3738

Henderson, S. W., Allison, R., Austermann, J., Baildon, T., Battaglia, N., Beall, J. A., Becker,

D., De Bernardis, F., Bond, J. R., Calabrese, E., Choi, S. K., Coughlin, K. P., Crowley,

K. T., Datta, R., Devlin, M. J., Duff, S. M., Dunkley, J., Dünner, R., van Engelen, A.,

. . . Wollack, E. J. (2016). Advanced ACTPol Cryogenic Detector Arrays and Readout.

Journal of Low Temperature Physics, 184 (3-4), 772–779. https : //doi . org/10 . 1007/

s10909-016-1575-z
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Ivezić, Ž., Kahn, S. M., Tyson, J. A., Abel, B., Acosta, E., Allsman, R., Alonso, D., AlSayyad,

Y., Anderson, S. F., Andrew, J., Angel, J. R. P., Angeli, G. Z., Ansari, R., Antilogus, P.,

Araujo, C., Armstrong, R., Arndt, K. T., Astier, P., Aubourg, É., . . . Zhan, H. (2019).
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Argüeso, F., Arnaud, M., Arroja, F., Ashdown, M., Aumont, J., Baccigalupi, C., Ballar-

dini, M., Banday, A. J., Barreiro, R. B., Bartlett, J. G., Bartolo, N., Basak, S., Battaglia,

P., . . . Zonca, A. (2016a). Planck 2015 results. I. Overview of products and scientific re-

sults. A&A, 594, Article A1, A1. https://doi.org/10.1051/0004-6361/201527101

Planck Collaboration, Ade, P. A. R., Aghanim, N., Alves, M. I. R., Armitage-Caplan, C., Arnaud,

M., Ashdown, M., Atrio-Barandela, F., Aumont, J., Aussel, H., Baccigalupi, C., Banday,

A. J., Barreiro, R. B., Barrena, R., Bartelmann, M., Bartlett, J. G., Bartolo, N., Basak,

S., Battaner, E., . . . Zonca, A. (2014a). Planck 2013 results. I. Overview of products

95

https://doi.org/10.1103/PhysRevD.100.043501
https://doi.org/10.1103/PhysRevD.100.043501
https://doi.org/10.1111/j.1365-2966.2005.08915.x
https://doi.org/10.1063/1.2219327
https://arxiv.org/abs/astro-ph/0602117
https://doi.org/10.1103/PhysRevD.106.043520
https://doi.org/10.1103/PhysRevD.106.043520
https://doi.org/10.1093/mnras/sty2314
https://doi.org/10.1093/mnras/sty2314
https://doi.org/10.1086/148307
https://doi.org/10.1086/307221
https://doi.org/10.1051/0004-6361/201527101


BIBLIOGRAPHY

and scientific results. A&A, 571, Article A1, A1. https://doi.org/10.1051/0004-6361/

201321529

Planck Collaboration, Ade, P. A. R., Aghanim, N., Armitage-Caplan, C., Arnaud, M., Ash-

down, M., Atrio-Barandela, F., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro,

R. B., Bartlett, J. G., Basak, S., Battaner, E., Benabed, K., Benôıt, A., Benoit-Lévy,
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M., Bielewicz, P., . . . Zonca, A. (2016b). Planck 2015 results. XXIV. Cosmology from

Sunyaev-Zeldovich cluster counts. A&A, 594, Article A24, A24. https ://doi .org/10.

1051/0004-6361/201525833

Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C.,

Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Battye, R., Ben-

abed, K., Bernard, J. P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bond, J. R., Borrill,

J., . . . Zonca, A. (2020a). Planck 2018 results. VI. Cosmological parameters. A&A, 641,

Article A6, A6. https://doi.org/10.1051/0004-6361/201833910

Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C.,

Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K.,

Bernard, J. P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bond, J. R., Borrill, J., Bouchet,

F. R., . . . Zonca, A. (2020b). Planck 2018 results. VIII. Gravitational lensing. A&A, 641,

Article A8, A8. https://doi.org/10.1051/0004-6361/201833886

Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C.,

Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K.,

Bernard, J. P., Bersanelli, M., Bielewicz, P., Bond, J. R., Borrill, J., Bouchet, F. R.,

Boulanger, F., . . . Zonca, A. (2020c). Planck 2018 results. III. High Frequency Instrument

data processing and frequency maps. A&A, 641, Article A3, A3. https://doi.org/10.

1051/0004-6361/201832909

Polnarev, A. G. (1985). Polarization and Anisotropy Induced in the Microwave Background by

Cosmological Gravitational Waves. Soviet Ast., 29, 607–613.

Pullen, A. R., Alam, S., He, S., & Ho, S. (2016). Constraining gravity at the largest scales

through CMB lensing and galaxy velocities. MNRAS, 460 (4), 4098–4108. https://doi.

org/10.1093/mnras/stw1249

Pullen, A. R., Alam, S., & Ho, S. (2015). Probing gravity at large scales through CMB lensing.

MNRAS, 449 (4), 4326–4335. https://doi.org/10.1093/mnras/stv554

Raghunathan, S., Patil, S., Baxter, E., Benson, B. A., Bleem, L. E., Chou, T. L., Crawford,

T. M., Holder, G. P., McClintock, T., Reichardt, C. L., Rozo, E., Varga, T. N., Abbott,

T. M. C., Ade, P. A. R., Allam, S., Anderson, A. J., Annis, J., Austermann, J. E., Avila,

S., . . . Zhang, Y. (2019). Mass Calibration of Optically Selected DES Clusters Using a

Measurement of CMB-cluster Lensing with SPTpol Data. ApJ, 872 (2), Article 170, 170.

https://doi.org/10.3847/1538-4357/ab01ca

96

https://doi.org/10.1051/0004-6361/201321529
https://doi.org/10.1051/0004-6361/201321529
https://doi.org/10.1051/0004-6361/201321543
https://doi.org/10.1051/0004-6361/201321543
https://doi.org/10.1051/0004-6361/201525833
https://doi.org/10.1051/0004-6361/201525833
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833886
https://doi.org/10.1051/0004-6361/201832909
https://doi.org/10.1051/0004-6361/201832909
https://doi.org/10.1093/mnras/stw1249
https://doi.org/10.1093/mnras/stw1249
https://doi.org/10.1093/mnras/stv554
https://doi.org/10.3847/1538-4357/ab01ca


BIBLIOGRAPHY

Rees, M. J. (1968). Polarization and Spectrum of the Primeval Radiation in an Anisotropic

Universe. ApJ, 153, L1. https://doi.org/10.1086/180208

Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M.,

Gilliland, R. L., Hogan, C. J., Jha, S., Kirshner, R. P., Leibundgut, B., Phillips, M. M.,

Reiss, D., Schmidt, B. P., Schommer, R. A., Smith, R. C., Spyromilio, J., Stubbs, C.,

Suntzeff, N. B., & Tonry, J. (1998). Observational Evidence from Supernovae for an

Accelerating Universe and a Cosmological Constant. AJ, 116 (3), 1009–1038. https://

doi.org/10.1086/300499
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Chapter 7

Appendix

7.1 Generalised Covariance Matrix

We discuss here in detail the expression of covariance presented in Eq. 3.3. We start from the

pseudo covariance given by

C̃ov
AB,CD
ℓℓ′ = ⟨(⟨C̃AB

ℓ ⟩−C̃AB
ℓ )(⟨C̃CD

ℓ′ ⟩−C̃CD
ℓ′ )⟩ = ⟨C̃AB

ℓ C̃CD
ℓ′ ⟩−⟨C̃AB

ℓ ⟩⟨C̃CD
ℓ′ ⟩ (7.1)

where C̃ℓ is pseudo power spectrum and A,B,C,D represent scalar fields on sky. Let ãℓm be the

spherical harmonic coefficients of C̃ℓ.

C̃ov
AB,CD
ℓℓ′ =

1
(2ℓ+ 1)(2ℓ′ + 1) ∑

mm′

[
⟨ãA

ℓmãB∗
ℓmãC

ℓ′m′ ãD∗
ℓ′m′⟩−⟨ãA

ℓmãB∗
ℓm⟩⟨ãC

ℓ′m′ ãD∗
ℓ′m′⟩

]
=

1
(2ℓ+ 1)(2ℓ′ + 1) ∑

mm′

[
⟨ãA

ℓmãC∗
ℓ′m′⟩⟨ãD

ℓ′m′ ãB∗
ℓm⟩+ ⟨ãA

ℓmãD∗
ℓ′m′⟩⟨ãC

ℓ′m′ ãB∗
ℓm⟩
] (7.2)

We can express ãℓm in terms of aℓm, the spherical harmonic coefficients of full sky power spectrum

Cℓ, using the mode-mode coupling kernel Kℓmℓ′m′ (Hivon et al., 2002) as:

ãℓm = ∑
ℓ′m′

aℓ′m′Kℓmℓ′m′ (7.3)

with which Eq. 7.2 becomes

C̃ov
AB,CD
ℓℓ′ =

1
(2ℓ+ 1)(2ℓ′ + 1) ∑

mm′
∑

ℓ1ℓ2ℓ3ℓ4
m1m2m3m4
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ℓmℓ1m1

KC∗
ℓ′m′ℓ2m2
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ℓ′m′ℓ3m3

KB∗
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⟨aC
ℓ2m2

aB∗
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⟩KC
ℓ′m′ℓ2m2

KB∗
ℓmℓ4m4

]
(7.4)

Using ⟨aℓmaℓ′m′⟩ = δℓℓ′δmm′⟨Cℓ⟩, in Eq. 7.4, we get

101



CHAPTER 7. APPENDIX

C̃ov
AB,CD
ℓℓ′ =

1
(2ℓ+ 1)(2ℓ′ + 1) ∑
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∑
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]
(7.5)

We develop each term in Eq. 7.5 assuming the large sky coverage (Efstathiou, 2004):

∑
ℓ1ℓ4

m1m4

⟨CAC
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(7.6)

Expanding the mode-mode coupling kernels in terms of sum over pixels and then, applying the

completeness relation of spherical harmonics:

∑
ℓ1m1

KX
ℓmℓ1m1

KY∗
ℓ′m′ℓ1m1

= ∑
ℓ1m1

∑
pq
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p

wXY
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= KXY
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(7.7)

where wp is an arbitrary weight function, Ωp is area of each pixel and we have defined wXY
p =

wX
p wY∗

p as another arbitrary weight function. With Eq. 7.6 and Eq. 7.7, Eq. 7.5 simplifies as:

C̃ov
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]
(7.8)

The product of coupling kernels can be expanded in terms of Wigner-3j symbols as:

∑
mm′

KAC
ℓmℓ′m′KBD∗

ℓmℓ′m′ = ∑
mm′
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) (7.9)

Using the orthogonality relations of Wigner-3j symbols, Eq. 7.9 simplifies as

∑
mm′

KAC
ℓmℓ′m′KBD∗

ℓmℓ′m′ = (2ℓ+ 1)MAC,BD
ℓℓ′ (7.10)
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where MAB,CD
ℓℓ′ is given by (Hivon et al., 2002)

MAB,CD
ℓℓ′ =

2ℓ′ + 1
4π

∑
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(2ℓ1 + 1)

[
1

2ℓ1 + 1 ∑
m1

wAC
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](
ℓ ℓ′ ℓ1

0 0 0

)2

(7.11)

This transforms the expression for pseudo covariance matrix Eq. 7.8 as

C̃ov
AB,CD
ℓℓ′ =

1
(2ℓ′ + 1)
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MAC,BD

ℓℓ′

√
CAC
ℓ CAC
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√
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ℓ′

]
(7.12)

The binned covariance matrix for full-sky is given by (Brown et al., 2005):

CovAB,CD
LL′ = (MAB−1

LL1
PL1ℓ)

[MAC,BD
ℓℓ′

√
CAC
ℓ CAC

ℓ′ CDB
ℓ CDB

ℓ′ + MAD,BC
ℓℓ′

√
CAD
ℓ CAD

ℓ′ CCB
ℓ CCB

ℓ′

(2ℓ′ + 1)

]
(MCD−1

L′L2
PL2ℓ′)

T

(7.13)

Eq. 7.13 is similar to that obtained by Tristram et al., 2005. This expression takes into account

different fractions of sky covered by the fields A,B,C,D.
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7.2 Extragalactic Surveys in HELP fields

Table 7.1: Contribution of different surveys to HELP fields

Survey Filter % of objects
NGP HS-82 SGP Part-1 SGP Part-2

DECaLS
g 15.9 - - -
r 19.4 - - -
z 11.6 - - -

DES

g - 99.3 2.0 98.8
r - 99.5 2.2 99.8
i - 98.7 2.2 99.7
z 86.1 99.3 2.0 99.3
y - 95.1 2.0 92.8

KiDS

u - - 90.2 1.2
g - - 98.7 13.0
r - - 99.8 19.6
i - - 99.3 17.6
z - - 16.6 7.7

PanSTARRS

g 99.3 43.8 0 9.4
r 100 45.7 0 10.2
i 100 46.0 0 10.6
z 100 45.7 0 10.2
y 99.6 44.2 0 9.6

RCSLenS

g - 20.6 - -
r - 23.9 - -
i - 3.8 - -
z - 20.9 - -
y - 9.3 - -

SDSS

u - 35.8 - -
g - 35.8 - -
r - 35.8 - -
i - 35.8 - -
z - 35.8 - -

SHELA + SpIES IRAC12 - 26.1 - -

UKIDSS-
LAS

Y 59.5 10.6 - -
J 50.0 8.1 - -
H 56.8 10.0 - -
K 58.9 13.7 - -

VISTA

Y - 2.9 29.9 20.8
J - 23.0 34.5 23.0
H - 13.9 29.2 16.8
Ks - 22.7 31.1 18.3
Z - - 51.3 34.9
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CHAPTER 7. APPENDIX

7.3 Validation of deconvolution method

In this section, we present the performance of the deconvolution method as described in section

4.3.2 using a toy example.

We generate a fiducial distribution function by random sampling from the LSST photometric

redshift distribution profile (Ivezić et al. 2019; LSST Science Collaboration et al. 2009) with

mean redshift 0.9, which we term as true distribution. We convolve the true distribution with a

Gaussian distribution with µ = 0.1,σ = 0.02 and call the resultant as the observed distribution.

In the left column of Figure 7.1, we show the true and observed distributions by blue and red solid

lines, respectively. We attempt to show the robustness of our deconvolution method by applying

it on un-smoothed distributions. In the right column of 7.1, we compare the true distribution

(blue solid line) with the distribution recovered using our deconvolution method (red dashed

line). The recovered distribution is in good agreement with the true redshift distribution, which

validates our deconvolution method to reconstruct the true redshift distribution.
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Figure 7.1: Left : True (blue solid line) and observed (red solid line) distributions for our toy
example. Right : Comparison of the true redshift distribution (blue solid line) with the distri-
bution recovered from deconvolution method (red dashed line). The recovered distribution is in
excellent agreement with the true redshift distribution.
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