Thermal evolution of neutron stars and constraints on their internal properties

Morgane FORTIN

N. Copernicus Astronomical Center (CAMK), Polish Academy of Sciences, Poland

FERO meeting, Kraków - Aug. 28, 2014

What is a neutron star (NS) ?

Origin

Remnant from the gravitational collapse of a \sim 10 M_{\odot} star during a Type II, Ib, Ic supernova event.

Properties

- mass $M \sim 1.4 \text{ M}_{\odot}$,
- radius R ~ 10 km,
- compactness $\frac{GM}{Rc^2} \sim 0.2$,
- average density $\bar{\rho} \sim 10^{15} \text{ g cm}^{-3}$,
- magnetic field $B \sim 10^8 10^{15}$ G.

\Rightarrow relativistic objects sustained by the strong interaction.

Crab Nebula hosting a pulsar

Credits : NASA/ESA.

What is a neutron star (NS) ?

Origin

Remnant from the gravitational collapse of a \sim 10 M_{\odot} star during a Type II, Ib, Ic supernova event.

Properties

- ▶ mass *M* ~ 1.4 M_☉,
- radius R ~ 10 km,
- compactness <u>GM</u> <u>Bc²</u> ~ 0.2,
- average density $\bar{\rho} \sim 10^{15} \text{ g cm}^{-3}$,
- magnetic field $B \sim 10^8 10^{15}$ G.

\Rightarrow relativistic objects sustained by the strong interaction.

Observations

- \gtrsim 2000 NSs from radio to γ -rays :
 - a majority as radio pulsars,
 - ~ 100 binary systems,
 - \blacktriangleright ~ 10 in double NSs binaries.

Structure

Envelope

- Plasma,
- Determines the spectrum and properties of the NS emission.

Outer crust

- Gas of electrons,
- lattice of ions.

Inner crust

- Electrons,
- free neutrons \rightarrow superfluid,
- a lattice of very neutron-rich atomic nuclei.

 $\begin{array}{l} \mbox{From Haensel et al. book (2007).} \\ \rho_{\rm ND} = 4 \times 10^{11} \mbox{ g cm}^{-3}, \rho_0 = 2.8 \times 10^{14} \mbox{ g cm}^{-3}. \\ \mbox{ M. FORTIN (CAMK)} \end{array}$

Structure

Outer core

- Free neutrons \rightarrow superfluid,
- ▶ free protons → superfluid,
- electrons,
- muons.

Inner core

▶ ?

 $\begin{array}{l} \mbox{From Haensel et al. book (2007).} \\ \rho_{\rm ND} = 4 \times 10^{11} \mbox{ g cm}^{-3}, \, \rho_0 = 2.8 \times 10^{14} \mbox{ g cm}^{-3}. \\ \mbox{M. FORTIN (CAMK)} \end{array}$

Structure

Key point

NSs are astrophysical laboratories for microphysics in particular for $\rho\gtrsim 10^{14}~{\rm g~cm^{-3}}$ at low *T*, not reachable in terrestrial laboratories.

$$\begin{array}{l} \mbox{From Haensel et al. book (2007).} \\ \rho_{\rm ND} = 4 \times 10^{11} \mbox{ g cm}^{-3}, \rho_0 = 2.8 \times 10^{14} \mbox{ g cm}^{-3}. \\ \mbox{M. FORTIN (CAMK)} \end{array}$$

Cooling of isolated NSs

t = 0► $T \sim 10^9 - 10^{10}$ K.

Evolution of the temperature profile

 $t \sim 1$ year

- the core cools by ν-emission,
- the crust by heat diffusion.

 \rightarrow crust properties.

Non-superfluid 1.4 M_☉ NS model.

Cooling of isolated NSs

t = 0

 $T \sim 10^9 - 10^{10} \text{ K}$

Evolution of the temperature profile

 $t \sim 1$ year

- the core cools by ν-emission,
- the crust by heat diffusion.

 \rightarrow crust properties.

- $t \le 10^5$ years
 - thermal balance between the core and the crust.
 - cooling by ν-emission;

 \rightarrow core properties.

 $t \gtrsim 10^5$ years

cooling via emission of photons from the surface.

Non-superfluid 1.4 Mo NS model.

Cooling of isolated NSs

t = 0

• $T \sim 10^9 - 10^{10}$ K.

 $t \sim 1$ year

- the core cools by ν-emission,
- the crust by heat diffusion.
- ightarrow crust properties.
- $t \lesssim 10^5 {
 m years}$
 - thermal balance between the core and the crust,
 - cooling by ν-emission;
- ightarrow core properties.
- $t\gtrsim 10^5~{
 m years}$
 - cooling via emission of photons from the surface.

Evolution of the surface temperature

Non-superfluid 1.4 M_{\odot} NS model.

X-ray telescopes eg. XMM-Newton, Chandra, AstroH, NuStar, Athena, ...

Biases

▶ small objects: detection of NSs with $T \sim 10^5 - 10^7$ K within few kpc.

 contamination from the supernova and the magnetospheric activity: middle-aged NSs.

Age and temperature determination

- age: uncertain unless the supernova as been observed in the past (cf. Crab pulsar): estimation from spin-down or modelling the expansion of the supernova.
- temperature: composition of the envelope unknown: H, He, Fe ?

Observational data

Observations vs a non-superfluid 1.4 M_{\odot} NS model.

X-ray telescopes eg. XMM-Newton, Chandra, AstroH, NuStar, Athena, ...

Biases

▶ small objects: detection of NSs with $T \sim 10^5 - 10^7$ K within few kpc.

 contamination from the supernova and the magnetospheric activity: middle-aged NSs.

Age and temperature determination

- age: uncertain unless the supernova as been observed in the past (cf. Crab pulsar): estimation from spin-down or modelling the expansion of the supernova.
- temperature: composition of the envelope unknown: H, He, Fe ?

Observational data

Observations vs non-superfluid NS models.

X-ray telescopes eg. XMM-Newton, Chandra, AstroH, NuStar, Athena, ...

Biases

▶ small objects: detection of NSs with $T \sim 10^5 - 10^7$ K within few kpc.

 contamination from the supernova and the magnetospheric activity: middle-aged NSs.

Age and temperature determination

- age: uncertain unless the supernova as been observed in the past (cf. Crab pulsar): estimation from spin-down or modelling the expansion of the supernova.
- temperature: composition of the envelope unknown: H, He, Fe ?

Observational data

Observations vs non-superfluid NS models.

X-ray telescopes eg. XMM-Newton, Chandra, AstroH, NuStar, Athena, ...

Biases

Observational data

- small objects: detection of NSs with T ~ 10⁵ - 10⁷ K within few kpc.
- contamination from the supernova and the magnetospheric activity: middle-aged NSs.

Age and temperature determination

- age: uncertain unless the supernova as been observed in the past (cf. Crab pulsar): estimation from spin-down or modelling the expansion of the supernova.
- temperature: composition of the envelope unknown: H, He, Fe ?

Observations vs non-superfluid NS models.

X-ray telescopes eg. XMM-Newton, Chandra, AstroH, NuStar, Athena, ...

Biases

- small objects: detection of NSs with T ~ 10⁵ - 10⁷ K within few kpc.
- contamination from the supernova and the magnetospheric activity: middle-aged NSs.

Age and temperature determination

- age: uncertain unless the supernova as been observed in the past (cf. Crab pulsar): estimation from spin-down or modelling the expansion of the supernova.
- temperature: composition of the envelope unknown: H, He, Fe ?

Constraints?

Too many uncertainties:

- the mass
- the atmosphere composition
- the age
- the distance
- the composition of the interior

....

to have constraints :-(

Cas A NS

- age known since supernova observed ~ 330 yr;
- first direct observation of a temperature decline during ~ 10 yr (Heinke & Ho, ApJL 2010);
- ► modeling → constraints on the proton and neutron superfluidities in the core of NSs (Shternin et al., MNRAS & Page et al. PRL 2011);
- BUT reanalysis of data: NO temperature decline at all (Posselt et al., ApJ 2013) :-(

M. FORTIN (CAMK)

Quasi-Persistent X-Ray Transients (QPXRTs)

Two phases

- accretion during ~ years to decades (L ~ 10³⁶⁻³⁹ erg s⁻¹),
- quiescence when accretion stops $(L \lesssim 10^{34} \text{ erg s}^{-1}).$

Deep crustal heating scenario (Brown et al., ApJ 1998)

While the accreted matter sinks into the crust, it undergoes a series of reactions that heats the crust.

Quasi-Persistent X-Ray Transients (QPXRTs)

KS 1731-26

Shternin et al., MNRAS (2007) :

- exclude a very efficient ν-process (DURCA) in the core,
- crystalline crust with superfluid neutrons.

Quasi-Persistent X-Ray Transients (QPXRTs)

KS 1731-26

Shternin et al., MNRAS (2007) :

- exclude a very efficient ν-process (DURCA) in the core,
- crystalline crust with superfluid neutrons.

MXB 1659-29

Brown & Cumming, ApJ (2009) :

► *Q*_{imp} ~ 1.

QPXRTs

Cooling time scales

	au (d)
KS	540 ± 125
MXB	465 ± 35
EXO	230 ± 60

Modeling of the thermal relaxation

Faster cooling : very hard to model.

QPXRTs

Cooling time scales

	au (d)
KS	540 ± 125
MXB	465 ± 35
EXO	230 ± 60
XTE	95 ± 15

Modeling of the thermal relaxation

- ► Too fast to be modeled → heat sources at low densities ?
- Burst with a high power-law component → residual accretion ?

Model so far :

Model in progress (M.F., J. L. Zdunik & P. Haensel) :

Successful modeling of the thermal relaxation of the 4 QPXRTs.

Results : 1.4 $M_{\odot}\ NS$

Fortin et al. (2011) MXB 1659-29

EXO 0748-676

Model in progress (M.F., J. L. Zdunik & P. Haensel) :

Refinements

- Realistic model of atmosphere : collaboration with A. Różańska (CAMK)

 → T_{eff} + spectra in the accreting phase,
- Realistic model of H-burning : (*T*, *ρ*) dependence.
- ⇒ Thermal evolution during both the accreting and quiescent phases.

New observations

EXO 0748-676

Degenaar et al., ApJ (2014)

	au (d)
KS	540 ± 125
MXB	465 ± 35
EXO	165 ± 60
XTE	95 ± 15

 \rightarrow even faster cooling.

New observations

New source: MAXI J0556-332

Homan et al., arxiv 1408.3276

	au (d)
KS	540 ± 125
MXB	465 ± 35
EXO	165 ± 60
XTE	95 ± 15
MAXI	240 ± 60

 τ "normal" but extremely large T \rightarrow additional heating of the crust: residual accretion?

New observations

New type of source: normal transient

IGR J17480-2446 in Terzan 5 (Degenaar et al., ApJ 2013): accreted during \sim 10 weeks only.

	au (d)
KS	540 ± 125
MXB	465 ± 35
EXO	165 ± 60
XTE	95 ± 15
MAXI	240 ± 60
Ter 5	100 ± 10

New window on the properties of accreting NSs.

Conclusion

Modeling the thermal evolution of isolated and accreting neutron stars enables to put constraint on their interior, eg. on

- the neutrino processes,
- the composition,
- ▶ ...

Isolated NSs \rightarrow core properties; Accreting NSs \rightarrow crust properties.

Observers : please find more of these accreting sources!