
Thermal evolution of neutron stars and
constraints on their internal properties

Morgane FORTIN

N. Copernicus Astronomical Center (CAMK), Polish Academy of Sciences, Poland

FERO meeting, Kraków - Aug. 28, 2014

M. FORTIN (CAMK) Thermal evolution of neutron stars and constraints on their internal properties



What is a neutron star (NS) ?

Origin

Remnant from the gravitational collapse of
a ∼ 10 M� star during a Type II, Ib, Ic su-
pernova event.

Properties

I mass M ∼ 1.4 M�,
I radius R ∼ 10 km,
I compactness GM

Rc2 ∼ 0.2,

I average density ρ̄ ∼ 1015 g cm−3,
I magnetic field B ∼ 108 − 1015 G.

⇒ relativistic objects sustained by the
strong interaction.

Crab Nebula hosting a pulsar

Credits : NASA/ESA.

M. FORTIN (CAMK) Thermal evolution of neutron stars and constraints on their internal properties



What is a neutron star (NS) ?

Origin

Remnant from the gravitational collapse of
a ∼ 10 M� star during a Type II, Ib, Ic su-
pernova event.

Properties

I mass M ∼ 1.4 M�,
I radius R ∼ 10 km,
I compactness GM

Rc2 ∼ 0.2,

I average density ρ̄ ∼ 1015 g cm−3,
I magnetic field B ∼ 108 − 1015 G.

⇒ relativistic objects sustained by the
strong interaction.

Observations

& 2000 NSs from radio to γ-rays :
I a majority as radio pulsars,
I ∼ 100 binary systems,
I ∼ 10 in double NSs binaries.
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Structure

From Haensel et al. book (2007).
ρND = 4 × 1011 g cm−3, ρ0 = 2.8 × 1014 g cm−3.

Envelope

I Plasma,
I Determines the spectrum

and properties of the NS
emission.

Outer crust

I Gas of electrons,
I lattice of ions.

Inner crust

I Electrons,
I free neutrons→ superfluid,
I a lattice of very neutron-rich

atomic nuclei.
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Structure

From Haensel et al. book (2007).
ρND = 4 × 1011 g cm−3, ρ0 = 2.8 × 1014 g cm−3.

Outer core

I Free neutrons→ superfluid,
I free protons→ superfluid,
I electrons,
I muons.

Inner core

I ?
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Structure

From Haensel et al. book (2007).
ρND = 4 × 1011 g cm−3, ρ0 = 2.8 × 1014 g cm−3.

Key point
NSs are astrophysical laboratories
for microphysics in particular for
ρ & 1014 g cm−3 at low T , not
reachable in terrestrial
laboratories.
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Cooling of isolated NSs

t = 0
I T ∼ 109 − 1010 K.

t ∼ 1 year
I the core cools by ν-emission,
I the crust by heat diffusion.

→ crust properties.

t . 105 years
I thermal balance between the

core and the crust,
I cooling by ν-emission;

→ core properties.

t & 105 years
I cooling via emission of

photons from the surface.

Evolution of the temperature profile
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Cooling of isolated NSs

t = 0
I T ∼ 109 − 1010 K.

t ∼ 1 year
I the core cools by ν-emission,
I the crust by heat diffusion.

→ crust properties.

t . 105 years
I thermal balance between the

core and the crust,
I cooling by ν-emission;

→ core properties.

t & 105 years
I cooling via emission of

photons from the surface.

Evolution of the surface temperature
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Observations of isolated NSs

X-ray telescopes eg. XMM-Newton, Chandra, AstroH, NuStar, Athena, . . .

Biases

I small objects: detection of
NSs with T ∼ 105 − 107 K
within few kpc.

I contamination from the
supernova and the
magnetospheric activity:
middle-aged NSs.

Age and temperature determina-
tion

I age: uncertain unless the
supernova as been observed
in the past (cf. Crab pulsar):
estimation from spin-down or
modelling the expansion of
the supernova.

I temperature: composition of
the envelope unknown: H,
He, Fe ?

Observational data
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Observations of isolated NSs
X-ray telescopes eg. XMM-Newton, Chandra, AstroH, NuStar, Athena, . . .

Biases

I small objects: detection of
NSs with T ∼ 105 − 107 K
within few kpc.

I contamination from the
supernova and the
magnetospheric activity:
middle-aged NSs.

Age and temperature determina-
tion

I age: uncertain unless the
supernova as been observed
in the past (cf. Crab pulsar):
estimation from spin-down or
modelling the expansion of
the supernova.

I temperature: composition of
the envelope unknown: H,
He, Fe ?

Constraints?

Too many uncertainties:
I the mass
I the atmosphere composition
I the age
I the distance
I the composition of the interior
I . . .

to have constraints :-(

Cas A NS

I age known since supernova observed ∼ 330
yr;

I first direct observation of a temperature
decline during ∼ 10 yr (Heinke & Ho, ApJL 2010);

I modeling→ constraints on the proton and
neutron superfluidities in the core of NSs
(Shternin et al., MNRAS & Page et al. PRL 2011);

I BUT reanalysis of data: NO temperature
decline at all (Posselt et al., ApJ 2013) :-(
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Quasi-Persistent X-Ray Transients (QPXRTs)
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Two phases

I accretion during ∼ years to decades
(L ∼ 1036−39 erg s−1),

I quiescence when accretion stops
(L . 1034 erg s−1).

Deep crustal heating scenario
(Brown et al., ApJ 1998)

While the accreted matter sinks into the
crust, it undergoes a series of reactions that
heats the crust.

Observations : Cackett et al., ApJ (2010)
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Quasi-Persistent X-Ray Transients (QPXRTs)
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Shternin et al., MNRAS (2007) :
I exclude a very efficient ν-process

(DURCA) in the core,
I crystalline crust with superfluid

neutrons.

Observations : Cackett et al., ApJ (2010)
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Quasi-Persistent X-Ray Transients (QPXRTs)
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Shternin et al., MNRAS (2007) :
I exclude a very efficient ν-process

(DURCA) in the core,
I crystalline crust with superfluid

neutrons.

MXB 1659-29

Brown & Cumming, ApJ (2009) :
I Qimp ∼ 1.

Observations : Cackett et al., ApJ (2008)
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QPXRTs
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Cooling time scales

τ (d)
KS 540± 125
MXB 465± 35
EXO 230± 60

Modeling of the thermal relaxation

Faster cooling : very hard to model.

Observations : Degenaar et al., MNRAS (2011)
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QPXRTs
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Cooling time scales

τ (d)
KS 540± 125
MXB 465± 35
EXO 230± 60
XTE 95± 15

Modeling of the thermal relaxation

I Too fast to be modeled→ heat
sources at low densities ?

I Burst with a high power-law
component→ residual accretion ?

Observations : Fridriksson et al., ApJ (2011)

M. FORTIN (CAMK) Thermal evolution of neutron stars and constraints on their internal properties



Model so far :

Surface

Envelope
(Teff − Tb) relation

ρb

ρ0/2

FeTb

Teff

Ṁ

Accreted crust Heat sources

Core

Inputs

I Envelope model at
ρb = 1010 g cm−3,

I Accreted crust and heat
sources
eg. Haensel & Zdunik,
A&A (2008) .

Can not include sources below
ρ = 1010 g cm−3 . . .
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Model in progress (M.F., J. L. Zdunik & P. Haensel) :

Ṁ

Lgrav = GMṀ
2RSurface

H H-Burning

He-BurningHe

Fe

Atmosphere

Envelope

ρ [g cm−3]

105

106

1010

ρ0/2

ρb

Accreted crust Heat sources

Core

Inputs

I Envelope model at
ρb = 104 g cm−3,

I H-burning : QH ' 5
MeV/acc. nucl.,

I He-burning :
only burst :
QHe = 0,

I Gravitational energy
at the surface.

Successful modeling of the thermal relaxation of the 4 QPXRTs.
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Results : 1.4 M� NS

Fortin et al. (2011)
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Model in progress (M.F., J. L. Zdunik & P. Haensel) :

Ṁ

Lgrav = GMṀ
2RSurface

H H-Burning

He-BurningHe

Fe

Atmosphere

Envelope

ρ [g cm−3]

105

106

1010

ρ0/2

ρb

Accreted crust Heat sources

Core

Refinements

I Realistic model of
atmosphere : collaboration
with A. Różańska (CAMK)
→ Teff + spectra in the
accreting phase,

I Realistic model of
H-burning : (T , ρ)
dependence.

⇒ Thermal evolution during
both the accreting and

quiescent phases.
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New observations
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→ even faster cooling.
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New observations

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.01  0.1  1  10

T
s
e
ff
 [
1
0

6
 K

]

t since last activity [years]

KS 1731-260
MXB 1659-29

EXO 0748-676
XTE J1701-462

MAXI J0556-332

New source: MAXI J0556-332

Homan et al., arxiv 1408.3276

τ (d)
KS 540± 125
MXB 465± 35
EXO 165± 60
XTE 95± 15
MAXI 240± 60

τ "normal" but extremely large T
→ additional heating of the crust: residual
accretion?
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New observations
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Ter5

New type of source: normal transient

IGR J17480-2446 in Terzan 5 (Degenaar et
al., ApJ 2013):
accreted during ∼ 10 weeks only.

τ (d)
KS 540± 125
MXB 465± 35
EXO 165± 60
XTE 95± 15
MAXI 240± 60
Ter 5 100± 10

New window on the properties of
accreting NSs.
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Conclusion

Modeling the thermal evolution of isolated and accreting neutron stars
enables to put constraint on their interior, eg. on

I the neutrino processes,
I the composition,
I . . .

Isolated NSs → core properties;
Accreting NSs → crust properties.

Observers : please find more of these accreting sources!
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