New Generation of X-ray Reflection Models from Ionized Accretion Disks around Black Holes

Javier García

Harvard-Smithsonian Center for Astrophysics

The FERO Meeting Finding Extreme Relativistic Objects Krakow, 28th - 30th August 2014

August 29th, 2014

• J. McClintock, J. Steiner, L. Brenneman, R. Narayan Harvard-Smithsonian Center for Astrophysics

• T. Dauser, J. Wilms, W. Eikmann

Dr. Karl Remeis-Observatory, Bamberg, Germany

• T.R. Kallman

NASA Goddard Space Flight Center

• C.S. Reynolds, A. Lohfink, F. Tombesi

Department of Astronomy, University of Maryland

Motivation

Big Picture: To measure the spin of Black Holes

- Two effective methods:
 - The continuum-method (Soft/Thermal state, see McClintock+13)
 - Fe-line method (Hard/PL state, see Reynolds+13)

X-ray reflection models are the cornerstone of the Fe-line method

Not so Big Picture: X-ray reflection is present in nearly every spectra from accreting sources

- Galactic Black Holes (Miller+12)
- Active Galactic Nuclei (Reynolds+13)
- Neutron Stars (Cackett+12)
- Ultra Compact X-ray Binaries (Gilfanov10)
- Supersoft X-ray sources (Suleimanov+03)
- X-ray Pulsars (Ballantyne+12)

X-ray Reflection from Accretion Disks: XILLVER

- The accretion disk is illuminated by a source of X-rays
- Radiation is reprocessed in an optically-thick material
- The 'reflected' spectrum contains both emission and absorption features from ions in the gas
- This component is observed in nearly all accreting sources (e.g. AGNs, GBHs, NS).

In any photoionized plasma, one needs to solve (at least) 3 basic equations: Level Populations, Energy, and Radiation Transfer

- Incident photons excite and/or ionize atoms in the gas
- The gas is heated by photo-absorption or scattering of photons by cold electrons
- Cooling is achieved by both continuum and line emission
- Equilibrium is reached at a particular temperature where heating = cooling
- Therefore, the gas **temperature** needs to be calculated self-consistently, and the **ionization balance** is determined by the strength and shape of the **radiation field**
- Complex emergent spectrum:
 - Absorption: continuous (photoelectric); discrete (lines, resonances and edges)
 - <u>Emission</u>: continuous (thermal black-body, bremsstrahlung); discrete (fluorescence lines, radiative recombination continua)

XILLVER in a Nutshell

- Solve Radiation Transfer equation in 1D, plane-parallel geometry
- Solve ionization balance using XSTAR (Kallman+Bautista10)
- Calculations include the most recent and complete atomic data for K-shell transitions
- Compton scattering is included via a convolution kernel

XILLVER: log $\xi = 2$, $\Gamma = 2$, $A_{\text{Fe}} = 1$

XILLVER: log $\xi = 2$, $\Gamma = 2$, $A_{\text{Fe}} = 1$

J. García (CfA)

Ionization Balance

Ionization Balance

Ionization Balance

Low- to high-ionization reflected spectra for $\Gamma = 2$ and solar abundances.

Variable Photon Index Γ

(García+13)

Variable Iron Abundance $A_{\rm Fe}$

J. García (CfA)

X-ray Reflection Models

August 29th, 2014 11 / 53

The Fe K Emission Complex

Emission lines from all the Fe ions in the 6 – 10 keV energy range. Red circles: Transitions with $A_r > 10^{13} \text{ s}^{-1}$.

http://heasarc.gsfc.nasa.gov/uadb/

Lower-Z elements

XILLVER spectra for $\Gamma = 3$ and solar abundances. Ionization increases upward in each Figure.

(García+13)

The Emission Angle: Reflection Spectrum

Reflection Spectra differ depending on the **Emission Angle**

However, common Convolution Models use Angle Averaged Reflection Spectra

Angular Effects

Angular Effects

Angular Effects

Illuminated atmospheres always follow a limb-brightening law that changes with the ionization of the gas

Modeling Relativistic Reflection: RELXILL

<u>RELXILL</u>: Relativistic reflection model that combines detailed reflection spectra from **xillver** (García & Kallman 2010), with the **relline** relativistic blurring code (Dauser et al. 2010).

Diagnostic potential: black hole spin

possible **Spin** values: $\mathbf{a} = -1 \dots 1$

high Spin \longrightarrow broad line (not always true, see later)

Diagnostic potential: inclination

The Emission Angle: Relativistic Effects

Relativistic blurring code RELLINE (Dauser+10).

J. García (CfA)

X-ray Reflection Models

The Emission Angle: Relativistic Reflection

 \Rightarrow Differences up to 20% between the proper treatment and the angle-averaged model.

Note, ALL reflection codes (e.g., reflionx or xillver) convolved by ANY relativistic code (e.g., kyconv, kerrconv, or relline) are angle-averaged

The Emission Angle: Bias to the Angle Averaged Model

Bias: mainly iron abundance (up to a factor 2), but also spin and inclination (García+Dauser+13, submitted)

The new model relxill: Fit to Ark 120

Suzaku spectrum of the Seyfert 1 galaxy Ark 120 (XIS,PIN). The solid line is the best-fit using the new relxill model. (García+Dauser+14)

The new model relxill: Fit to Ark 120

Parameters are better constrained with the new angle-resolved model (solid lines), than with the angle-averaged version (dashed-lines). (García+Dauser+14)

RELXILL_LP: Lampost Geometry

Probe the geometry and location of the Primary Source \rightarrow low height implies enhanced irradiation of the inner parts

radially extended sources are also possible \rightarrow Jets

J. García (CfA)

X-ray Reflection Models

 $R_f = \frac{F_{AD}}{F_{\infty}}$

Fraction of the photons that reach the disk to those that reach infinity

 $R_f = ?$

 $R_f = \frac{F_{AD}}{F_{\infty}}$

Fraction of the photons that reach the disk to those that reach infinity

 $R_f = 1$

 $R_f = \frac{F_{AD}}{F_{\infty}}$

Fraction of the photons that reach the disk to those that reach infinity

 $R_f < 1$

$$R_{f} = \frac{F_{AD}}{F_{\infty}}$$

$$R_{f} = ?$$
Fraction of the photons
that reach the disk to those
that reach infinity
$$R_{f} = ?$$
Accretion Disk

$$R_{f} = \frac{F_{AD}}{F_{\infty}}$$

$$R_{f} > 1$$
Fraction of the photons
that reach the disk to those
that reach infinity
$$R_{f} > 1$$
Accretion Disk

t t

Stationary and isotropic radiating source on the axis of symmetry of the accretion flow, fractions are shown as a function of height of the primary source and for a = 0.998 (solid), a = 0.9 (dashed), and a = 0.5 (dotted lines).

Reflection Fraction from RELXILL

Main parameters that control R_f : BH spin *a*, inner radius r_{in} , and the height *h* of the X-ray source.

Maximum Reflection Fraction

Maximum Reflection Fraction

Unphysical solutions can be excluded!

Height for Maximum $R_f(max)$ versus spin

$$h_{R_{max}}(a) = (1.89a^2 - 10.86a + 10.07) \left(1 + \frac{9.41 \times 10^{-4}}{log(a)}\right), \text{ for } a < 0.975$$

 $h(R_{max}) = 1 + \sqrt{1 - a^2}, \text{ for } a > 0.975$

3-50 keV 100 ks NuSTAR observation of the AGN Mrk 335 in a very low flux state.

(Parker+14)

(Parker+14)

Observational Implications: Spin Distribution

(Reynolds+13)

High-spin preference can be due to an observational bias

Summary: New Set of Reflection Models

Relativistically Blurred Reflection

http://www.sternwarte.uni-erlangen.de/research/relxill/

relxill: Broken PL emissivity

- q_{in}, q_{out}, R_{br}
- a_{*}, R_{in}, R_{out}, i
- $\Gamma, \xi, A_{\rm Fe}$
- z, N, angleon

relxill_lp: Lampost

- h
- a_{*}, R_{in}, R_{out}, i
- Γ, *ξ*, *A*_{Fe}
- z, N, angleon

Pure Reflection

- Photon index $1.2 \le \Gamma \le 3.4$
- Ionization parameter $1 \le \xi \le 10^4$
- $\bullet~$ Fe abundance $0.5 \leq A_{\rm Fe} \leq 10$
- Inclination $5^{\circ} \leq i \leq 85^{\circ}$
- High-Energy Cutoff (keV) $20 \le E_c \le 300$

Current and Future Developments

- Reflected spectra to model GBHs (including thermal disk component).
- Relativistic reflection considering an ionization gradient in the radial direction.
- Hydrostatic atmospheres (e.g. Rozanska+08, Nayakshin+00, Ballantyne+01).
- Connection with GR-MHD simulations (e.g. Schnittman+Krolik13).

- Theory says spin should profoundly affect the behavior of accreting black holes, with potential implications on relevant problems such as relativistic jets power, galaxy evolution and high-energy physics acceleration.
- Broad Fe lines are a great tool in the black hole spin determination, with reflection modeling playing a mayor role. Current results suggest that reflection from accretion disks could be more complicated than what we thought.
- Black holes spins are currently being measured by either the Continuum Fitting or the Fe-line Fitting Methods. However, both methods need to be improved and brought into agreement.

Backup Slides

Ionization Gradients

Ionization Gradients

J. García (CfA)

X-ray Reflection Models

- Theory says spin should profoundly affect the behavior of accreting black holes, with potential implications on relevant problems such as relativistic jets power, galaxy evolution and high-energy physics acceleration.
- Broad Fe lines are a great tool in the black hole spin determination, with reflection modeling playing a mayor role. Current results suggest that reflection from accretion disks could be more complicated than what we thought.
- Black holes spins are currently being measured by either the Continuum Fitting or the Fe-line Fitting Methods. However, both methods need to be improved and brought into agreement.

Reflected spectra from XILLVER and REFLIONX models (Ross+Fabian05)

- Good agreement in the Fe K line and edge positions.
- Fe K α is stronger in XILLVER (affects $A_{\rm Fe}$)
- Lack of Fe K β and many lower-Z lines in RE-FLIONX due to the atomic data (may affect ξ)
- Best overall agreement for large Γ and low ξ
- Excess of flux in the soft-band always present in REFLIONX spectra

(García+13)

Equivalent Widths

Equivalent widths for the Fe K emission

$$EW = \int_{5.5 \text{ keV}}^{7.2 \text{ keV}} \frac{F(E) - F_c(E)}{F_c(E)} dE$$

- For low-ξ XILLVER EWs are large due to the Fe Kβ emission
- \bullet Good agreement in models with high- $\!\xi$
- Larger discrepancies for $10^2 \lesssim \xi \lesssim 10^3$: in REFLIONX the Fe K emission is assumed to be suppressed by Resonant Auger Destruction
- XILLVER does not include resonant absorption. Line intensity might be overestimated

(García+13)

J. García (CfA)

XILLVER reflected spectra compared with PEXRAV (Magdziarz & Zdziarski95) for a neutral slab (left panel), and with PEXRIV for an ionized slab (right panel)

Comparison of best-fits to XMM-Newton EPIC-pn spectrum of the Circinus galaxy: XILLVER vs. REFLIONX. The lower panels show the data to model ratio for each case. Our model reproduces the Fe K β at ~ 7.2 keV and many other features at low-energies.

(Kreikenbohm+13)

Variable Photon Index Γ

For large values of ξ (high illumination), the dominant process is the Compton heating and cooling

$$n_e \Gamma_e = \frac{\sigma_{\rm T}}{m_e c^2} \left[\int \varepsilon F_\varepsilon d\varepsilon - 4kT \int F_\varepsilon d\varepsilon \right]$$

In thermodynamic equilibrium, the two terms balance at

$$T_{\rm C} = rac{arepsilon}{4k},$$

where
$$\langle \varepsilon \rangle = \frac{\int F_{\varepsilon} \varepsilon d\varepsilon}{F_{\varepsilon} d\varepsilon}$$
 is the mean-energy.

Comparison with other models

XILLVER spectra for $\xi = 10^3$, and REFLIONX for $\xi = 500$. The flux in the continuum at 1 keV differs by ~ 1 order of magnitude.

J. García (CfA)

The Compton hump

Comparison of the reflected spectra as calculated with XILLVER, REFLIONX, and the Monte Carlo simulation, for an illumination with $\Gamma = 2$, $\xi = 1$, and solar abundances.

Summary: Broad Emission Line Shapes

high **Diagnostic Potential** for many parameters

K-shell Photoabsorption

Liedahl+Torres05

The X-ray band ($\sim 0.1 - 10$ keV) covers the emission and absorption produced by the inner-shell transitions of the astrophysically abundant ions (C \rightarrow Ni).

- Line positions provide information about the gas composition (identification), as well as about its dynamics (redshifts, gas outflows)
- Line intensities provide information about the column of the absorbing material (including ions), constrains on the ionization degree of the gas ($\xi = L/nR^2$), temperature and density
- Line shapes provide information about the thermal and turbulent motions of the gas, and can also probe relativistic effects near strong gravitational fields