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ABSTRACT

While the motion of particles near a rotating, electrically neutral (Kerr), and charged (Kerr—Newman) black hole is
always strictly regular, a perturbation in the gravitational or the electromagnetic field generally leads to chaos. The
transition from regular to chaotic dynamics is relatively gradual if the system preserves axial symmetry, whereas
non-axisymmetry induces chaos more efficiently. Here we study the development of chaos in an oblique (electro-
vacuum) magnetosphere of a magnetized black hole. Besides the strong gravity of the massive source represented
by the Kerr metric, we consider the presence of a weak, ordered, large-scale magnetic field. An axially symmetric
model consisting of a rotating black hole embedded in an aligned magnetic field is generalized by allowing an
oblique direction of the field having a general inclination with respect to the rotation axis of the system. The
inclination of the field acts as an additional perturbation to the motion of charged particles as it breaks the axial
symmetry of the system and cancels the related integral of motion. The axial component of angular momentum is
no longer conserved and the resulting system thus has three degrees of freedom. Our primary concern within this
contribution is to find out how sensitive the system of bound particles is to the inclination of the field. We employ
the method of the maximal Lyapunov exponent to distinguish between regular and chaotic orbits and to quantify

their chaoticity. We find that even a small misalignment induces chaotic motion.
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1. INTRODUCTION

Since the seminal work of Carter (1968), it has been well-
known that the motion of particles near a rotating black hole is
strictly regular. This remarkable property is guaranteed by the
full integrability of the system due to the existence of the fourth
constant of motion, and it holds even in the case of an electrically
charged, rotating black hole. On the other hand, as soon as the
black hole is embedded in an external magnetic field, chaotic
dynamics may appear (Kopacek et al. 2010a). While the electric
charge of astronomical black holes is negligible, the role of the
magnetic field is important (e.g., Camenzind 2007).

In this paper, we study the role of large-scale (organized)
magnetic fields on the properties of motion near a rotating
black hole. Recent general-relativistic magnetohydrodynamic
(GRMHD) simulations (Penna et al. 2010) suggest that accretion
flows onto black holes are complemented by outflows emerging
from accretion disks and tori, and, in some regions of the
flow, produce large-scale (organized) magnetic loops in a self-
consistent manner. The mechanism leading to the development
of ordered bundles of the magnetic lines of force with a
significant degree of long-range coherence appears to be highly
relevant in the context of formation of jets and outflows from

accreting black holes. Simulations indicate that the role of -

black hole rotation is important and this supports the idea of
Blandford—Znajek mechanism (Blandford & Znajek 1977) as
the origin of acceleration and collimation in the vicinity of
black holes (Sadowski et al. 2013). The formulation of the
problem of particle acceleration in the context of oblique pulsar
magnetospheres has been discussed by Li et al. (2012).

We explore the effects of organized magnetic fields in a differ-
ent context of particle motion near a weakly magnetized black
hole (the magnetic field does not change the spacetime met-
ric). We address the problem of regularity versus chaoticity of
the resulting motion of electrically charged particles (electrons

and ions) resulting from the mutual interplay of gravitational,
electromagnetic, and gravito-magnetic effects of general rela-
tivity. As a matter of principle, we want to understand under
what condition chaos emerges and drives the particle motion
near magnetized black holes. To this end we assume that the
magnetic field arises from currents flowing far out in the accre-
tion disk. Unlike most of previous analytical works, we do not
impose axial symmetry (the magnetic field can be inclined with
respect to the rotation axis of the black hole).

The particle approximation allows us to concentrate our atten-
tion on purely general-relativistic effects of the curved electro-
vacuum spacetime while neglecting collective interactions and
shocks in the plasma (Kalapotharakos et al. 2012). The adopted
approximation is thus relevant to situations when the GRMHD
conditions are not satisfied: in our case, particle mean free path
Iy is assumed to be very long (exceeding the gravitational ra-
dius of the black hole, I > Ry = GM/cZ) while, simultane-
ously, the gravitational field is very strong (curvature radius' is
smaller than R,); see Cremaschini et al. (2013) and references
therein.

This work represents a natural extension of our previous
studies (Kopacek et al. 2010a; Kovar et al. 2008, 2010) in which
we considered dynamic properties of charged matter orbiting
in the vicinity of massive objects. Our primary concern was
to identify and investigate regions of a stable, off-equatorial
motion. Trajectories of ionized particles confined to such regions
constitute a basic non-interacting test particle approximation
of astrophysical coronae formed by diluted plasma above and
below the accretion disk of accreting systems.

! Curvature of the vacuum spacetime may be locally characterized by

Kretschmann scalar K evaluated from the Riemann curvature tensor

K = RHvEm Rvex . The explicit form of the Kretschmann scalar for
Kerr—-Newmann spacetime is given by Henry (2000). The characteristic length
scale of the spacetime time curvature (curvature radius) is then expressed as
K-,
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Several models have been considered so far. As a first
step, the existence of off-equatorial orbits was investigated in
the spacetime described by the exact Kerr—Newman solution,
i.e., the case of a rotating, electrically charged black hole.
Considering only the astrophysically relevant region above the
outer horizon of the black hole, it was found that there are no
stable circular orbits (halo orbits) outside the equatorial plane
(Kovér et al. 2008). Therefore, we altered our model, namely,
we employed test field solutions describing large-scale, ordered
magnetic fields (asymptotically uniform or dipole type) in which
the compact object is immersed. In particular, we investigated a
system consisting of Schwarzschild black hole with a rotating
magnetic dipole field, and the case of the Kerr black hole in an
asymptotically uniform magnetic field, which both appeared to
host non-equatorial confinements of charged particles (Kovar
et al. 2010). Since both of these systems were found to be non-
integrable, in which case the chaotic dynamics emerges, we
subsequently focused on the dynamic properties of these orbits,
trying to identify which parameters of the system trigger chaos.
We found that within the off-equatorial lobes, the dynamics
are mostly regular and chaos typically appears only when the
energy of the particle is sufficiently increased to the level that
corresponds to cross-equatorial confinements (Kopéacek et al.
2010a).

More recently, a static model of an exact Einstein—-Maxwell
spacetime was considered in this context (Kovar et al. 2013).
Namely, the dynamics of charged matter in off-equatorial wells
above the massive magnetic dipole described by Bonnor’s exact
solution (Bonnor 1966) was investigated. In such a case, the
electromagnetic field affects the geometry of the spacetime and
as a particular consequence of this influence, we found that the
system allows off-equatorial orbits even for neutral test particles.
The interplay between the chaotic and ordered motion of test
particles in the exactly given static field of a massive source
encircled by a disk or a ring was also recently investigated
(Sukovd & Semerak 2013; Semerdk & Sukova 2012, 2010).
Nevertheless, in the following, we intend to focus on a more
realistic model in which the rotation of the central object is
included. On the other hand, we will restrict ourselves to the test
field approximation in which the electromagnetic field affects
charged particles, but it does not modify the metric.

In this contribution, we plan to investigate the dynamical
properties of charged particles in the generalized model consist-
ing of the rotating Kerr black hole in the asymptotically uniform
magnetic field that is inclined with respect to the rotation axis.
A corresponding test field solution was given by Bicdk & Janis§
(1985). To our knowledge, however, the particle motion in this
setup has not yet been inspected.

The paper is organized as follows. In Section 2, we present
formal description of the model and explicitly specify the elec-
tromagnetic four-potential A, . Then we review the Hamiltonian
formalism which is employed to derive equations of motion. Ap-

plication of the method of the maximal Lyapunov exponent as an *

indicator of chaos is also briefly discussed. The analysis of the
motion of particles affected by the inclination of the magnetic
field is presented in Section 3. Three distinct classes of orbits are
treated separately in corresponding subsections. Possible ways
for observational verification are discussed in Section 4. Re-
sults of the numerical analysis are summarized and discussed
in Section 5. In Appendix A, we comment on the method of
the effective potential and its limited applicability in a given
context. Appendix B provides an estimate of radiation power
generated by the investigated system.
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2. SPECIFICATION OF THE MODEL AND
EMPLOYED METHODS

2.1. Rotating Black Hole in External Magnetic Field

The Kerr metric describing the geometry of the space-
time around the rotating black hole may be expressed in
Boyer-Lindquist coordinates x* = (¢, r, 6, ¢) as follows
(Misner et al. 1973):

) A 9 in> 0 2
ds = =5 [dr —asin0del’+ MY 102 + a)dg — adr?
s
+ = dr? +2d6, )
A
where

A=r?=2Mr+ad®, E=r’+a’cos’f. 2)
We stress that geometrized units are used throughout the paper.
Values of basic constants (gravitational constant G, speed of
light ¢, Boltzmann constant k, and Coulomb constant k¢) thus
equalunity G =c=k =kc = 1.

Test field solution corresponding to the aligned magnetic field
(of the asymptotic strength B.) was derived by Wald (1974).
This solution was later generalized by Bic¢ak & Janis (1985)
to describe the field which is arbitrarily inclined with respect
to the rotation axis (specified by two independent components
B. and B,). Here we also consider a non-zero electric charge
O of the black hole generating the electromagnetic field of the
Kerr—Newman black hole, though in the test field regime (metric
remains unaltered by Q). The resulting vector potential A, is
given as follows:
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where we use the azimuthal coordinate ¥ of the Kerr ingoing
coordinates, which is related to Boyer-Lindquist coordinates as
follows:

F—r
In -, 0

r o=l

V=¢+—

Py —F_

with r. = M £ +/M? — a? denoting the outer and the inner
horizon, respectively. We note that lim,_, ¥ = ¢.

We have previously investigated the structure of the electro-

magnetic field emerging in a more general case of the Kerr black

hole immersed in the asymptotically uniform magnetic field
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(1) which is inclined with respect to the rotation axis and (2) in
which the black hole is drifting with the constant velocity and
in the arbitrary direction (Karas et al. 2012; Karas & Kopacek
2009). We found complex structures of both the magnetic and
the electric field lines in this model. In particular, we observed
that due to combined effects of the translational motion and the
frame dragging (caused by the black hole’s rotation), the null
points of magnetic field may arise. These may be highly relevant
for the acceleration processes of ionized matter in the vicinity
of an accreting object. Nevertheless, the motion of charged par-
ticles exposed to such a field has not been inspected in the
aforementioned studies and within this paper we consider the
inclination of the magnetic field but not the translational motion
of the black hole.

2.2. Equations of Motion

Employing the Hamiltonian formalism, we first construct the
super-Hamiltonian H:

1
H = 58" (T, — qA)T —qA), ®)

where ¢ is the charge of the test particle (of rest mass m), , is
the generalized (canonical) momentum, g"" is the metric tensor,
and A, denotes the vector potential of the electromagnetic
field. The latter is related to the electromagnetic tensor Fj,
by Fuv = Avu — Ay

Hamilton’s equations of motion are given as

det . _OM dm, _0H o
di o, di axn’
where A = t/m is the affine parameter (dimensionless in

geometrized units), T denotes the proper time, and p* is
the standard kinematical four-momentum for which the first
equation reads p* = n* — gA*, and thus the conserved value
of super-Hamiltonian is equal to H = —m?/2. Moreover, the
system is stationary since the Hamiltonian is independent on
the coordinate time z. Its conjugate momentum 7, is therefore
integral of motion. Namely, it expresses (negatively taken) the
energy of the test particle 7, = —E.

The mass of the black hole M is used to scale all quantities,
which is formally equivalent to setting M = 1 in the equations.
We also switch to specific quantities g/m — g and E/m — E
when describing the test particle. From the above equations,
we conclude that independent parameters of the investigated
system are thus a, ¢ Q, g B, and ¢gB,. Indeed, the quantities By,
B, and Q only appear in the product with the particle’s charge
in the equations of motion (9) since the electromagnetic field is
treated in the test field approximation. Besides that, particular
trajectory is further specified by its initial position in the phase
space 1(0), 6(0), ¢(0), 7,-(0), 4(0), and 7,,(0) whose values are,

however, bound by the normalization condition p*p, = —m?.

Therefore, we do not set all the components arbitrarily and
choose to compute the value 75(0) using the normalization of
the four-momentum and its remaining components instead.

2.3. Maximal Lyapunov Characteristic Exponent

Maximal Lyapunov exponent y is commonly used as a basic
quantitative indicator of chaotic dynamics (e.g., Lichtenberg &
Lieberman 1992). Its value directly captures the tendency of
nearby orbits to diverge as the system evolves. In other words, it
allows us to express how sensitive the given orbit is on the initial
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condition whilst the high (exponential) sensitivity is a defining
property of chaos. The exponent x is defined as follows?:

L [[w@)]

= lim —1In R
X n  wO)l]

(10)
where we choose to use the standard L? (Euclidean) norm to
measure the length of the deviation vector in the phase space
w(A) = (8t, 87, 86, 8¢, 8m;, 87, 87, 671,). In this context, we
have also experimented with norms reflecting the curvature of
the spacetime, however, it appeared that for a given application
the choice of the norm is not crucial (Kopacek et al. 2010a).
Although Lyapunov exponents within the relativistic framework
are generally not invariant under coordinate transformations
(Karas & Vokrouhlicky 1992; Dettmann et al. 1995), signs of
the exponents are preserved (Motter 2003; Motter & Saa 2009).
Therefore, the distinction between chaotic and regular orbits
may be drawn invariantly.

The usual method of determining the evolution of the de-
viation w(X\) consists in solving variational equations which
restrict us to the linear term in a corresponding Taylor expan-
sion (Kaltchev & Dragt 2013). One can therefore express the
variational equations in the following matrix form with col-
umn vector w” and its derivative w7 with respect to the affine
parameter A:

W' =J-D*HM) - w', (11)

where D> is the Hessian matrix composed of second deriva-
tives of the super-Hamiltonian H with respect to phase space
variables and J is constant matrix with following block form:

J = (% [, in which I, and 0, denote n-dimensional identity

and zero matrices, respectively. In our case, n = 4. Detailed
derivations of variational equations (11) and their properties are
given in a recent review on Lyapunov exponents by Skokos
(2010). Matrix D*>H is evaluated along the orbit and explicitly
depends on the current position in the phase space; therefore it is
necessary to integrate variational equations simultaneously with
corresponding equations of motion (9). We set the initial devia-
tion as follows w(0) = 1/«/8_(1, 1,1,1,1, 1, 1, 1). The theory
of Lyapunov spectra guarantees that setting random initial de-
viation results in the computation of the maximal exponent x
with a probability of one, and the set of initial deviations for
which we would obtain different Lyapunov exponents has zero
measure (Skokos 2010).

The maximal Lyapunov exponent x corresponds to the most
unstable direction in the phase space, however, exponents
related to the complementary phase space directions can also
be determined to reveal the whole Lyapunov spectrum. General
properties of Lyapunov exponents imply that an autonomous
Hamiltonian system of three degrees of freedom has four non-
zero exponents out of which, however, only two are independent
as they always appear in pairs of opposite signs but equal
absolute values (Skokos 2010). The computation of the whole
spectrum of Lyapunov exponents can be performed using,
e.g., the standard method developed by Benettin et al. (1980).
Although knowing the whole spectrum provides additional
information about a given orbit, for the purpose of detecting

= The Lyapunov exponent x is defined as an asymptotic measure (10). In the
numerical application, we actually compute the quantity usually denoted as

finite time Lyapunov exponent, which depends on the integration variable,

instead of the limit. However, in this text, we disregard such distinctions and
use the term Lyapunov exponent for both quantities as it cannot cause any
confusion within the scope of the paper.
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chaotic dynamics it is sufficient enough to only compute the
maximal exponent. For chaotic orbits, exponent x attains a
positive value?, while for regular trajectories it tends to zero
as x (L) o< A~!. Therefore, in the logarithmic plot log x (log A),
the regular trajectory appears as a linearly decreasing function
while the chaotic orbit, sooner or later, leaves the trend of linear
decreasing and converges to the positive value. The Lyapunov
time t, = x~' may thus be used to estimate the time after
which the chaoticity of a given orbit manifests.* In particular,
our operational criterion for full or saturated chaos will be
the approximate relation #, < T, assuring that the trajectory
exhibits chaotic properties on the timescale of its azimuthal
period or even faster.

However, the convergence of x may become very slow, and in
some cases extremely long integration times are needed to reveal
the chaotic nature of the trajectory. For example, some chaotic
orbits get stuck in close vicinity of a regular orbit for a long
time before they escape to the larger chaotic domain in the phase
space (the so-called “stickiness effect”; see, e.g., Contopoulos &
Harsoula 2010). The computation of Lyapunov exponents may
also be obstructed by numerical errors, especially when the
long integration is required, the proper choice of the integrator
becomes crucial (e.g., Seyrich & Lukes-Gerakopoulos 2012).
However, if one proceeds with caution, the method usually gives
reliable results.

In general, when performing the long-term integration of
the Hamiltonian system, the method of choice would be a
symplectic integrator (e.g., Yoshida 1993). However, it is not
possible to use a symplectic scheme for the simultaneous
integration of the variational equations, and therefore we have
to apply some non-symplectic method. Namely, we employ the
Matlab integrator ODE87 which is an explicit 7th-8th order
Runge—Kutta solver based on the Dorman—Prince formulas. The
precision of this integrator with adaptive step-size is controlled
by setting the relative tolerance (RelTol), which specifies the
highest allowed relative error in a single integration step. We
were able to run our integrations with RelTol = 5 x 10716,
During each integration we checked for the cumulative error
(causing artificial excitation or damping of the system) by
expressing the relative change of energy of the particle which
maximally reached 2107 for the longest runs.

3. REGULAR AND CHAOTIC ORBITS

Common characteristics of previously investigated models
are stationarity and axial symmetry. Such a system has two de-
grees of freedom in the four-dimensional spacetime. Consider-
ing the oblique magnetic field, however, we break the axisymme-
try and the resulting system has three degrees of freedom, which
has several important implications regarding the techniques we
can apply for the analysis. First of all, we can no longer use the
method of effective potential to localize the regions of bound or-

bits and, in particular, to find the stable, circular, off-equatorial -

orbits corresponding to the local minima of the potential (see
Appendix A). Besides that, the method of Poincaré surfaces of
section, which is commonly used to visualize the trajectories

3 However, even in the integrable systems, where no chaotic dynamics

appears, unstable periodic orbits may be found, which also have positive
Lyapunov exponents. Nevertheless, such orbits are rare as they form a set of
zero measure (Contopoulos 2002).

4 Lyapunov time is defined for the asymptotic value of x as given by
Equation (10). In practical numerical applications, we evaluate #_ of a chaotic
orbit for such a value of A for which x appears to attain its limit, i.e., it does
not evolve anymore.
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and distinguish between regular and chaotic dynamics in sys-
tems of two degrees of freedom, fails to deliver unambiguous
results in this case. We will explore the behavior of the maximal
Lyapunov characteristic exponent x as a primary indicator of
chaotic dynamics instead.

The inapplicability of the effective potential method leaves
us without the usual tool for a systematical search for stable
orbits throughout the configuration space and parameter space.
In this place; we take advantage of our former study of
axisymmetric versions of given systems (Kovdr et al. 2010;
Kopalek et al. 2010a) and use the particular, previously-
investigated, confinements of particles in the system with
aligned magnetic fields as the starting point of our current
analysis. We will gradually incline the originally aligned field
and observe its impact upon the dynamics of particles. Such
an approach has obvious limitations. We cannot set arbitrary
inclination B,/B:, as we need to maintain the confinement of
stable orbits whose presence at a given location non-trivially
depends on its value. Actually, we shall fix all other parameters
and increase the inclination of the field as long as we find
the confinement of stable orbits. After reaching the critical
inclination angle, the confinement disintegrates allowing the
particles to escape to infinity or to fall onto the horizon. We are,
however, only interested in the family of bound orbits.

In the following, we shall separately treat three distinct classes
of orbits which we detected in the aligned field considering both
charged and neutral black holes. Namely, in Section 3.1, we shall
explore the impact of inclination of the field upon the regular
orbits in off-equatorial confinement. In Section 3.2, we consider
chaotic orbits in the cross-equatorial lobe and in Section 3.3,
the class of regular, equatorial trajectories is investigated. The
distinction between equatorial and cross-equatorial orbits is
based upon the different topology of effective potential defining
the confinement. In the case of equatorial orbits, the underlying
potential has a local minimum in the equatorial plane, while
the cross-equatorial lobe is defined by the pair of symmetric
off-equatorial minima separated by the saddle point residing in
the equatorial plane. According to the results of our previous
analysis, the latter configuration generally appears to host
mainly chaotic orbits while the dynamics in the equatorial wells
remains predominantly regular as long as the energy is raised
only slightly above the level of the corresponding potential
minimum.

As we have already mentioned, we choose examples of
both charged and neutral black holes. In general, the pres-
ence or absence of test charge Q (the generating Kerr-Newman
test field which we superpose to the magnetic field—see
Equations (3)-(6)) does not seem to act as the factor systemati-
cally shifting the dynamics to become more or less chaotic. This
is not surprising if we recall that the Kerr—Newman field alone
does not represent a non-integrable perturbation for charged
particles, as it admits the fourth integral of motion—Carter’s
constant £ (Carter 1968; Misner et al. 1973). Although it evi-
dently affects the dynamics of ionized particles (e.g., changes
the location and shape of the particle confinements), it does not
act as a trigger for chaos.

3.1. Regular Off-equatorial Orbits

Considering the aligned magnetic field in Kopacek et al.
(2010b), we classified off-equatorial lobes according to the be-
havior of effective potential in the vicinity of its off-equatorial
minima into four distinct classes Ia—Id (see Figure 1). Closed
lobes define regions of possible confinement of particles,
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Figure 1. Classification of possible topologies of off-equatorial potential lobes appearing above the event horizon (bold line) of the Kerr black hole immersed into the
asymptotically uniform magnetic field aligned with the rotation axis (Kopdcek et al. 2010b).

whereas the lobes extending down to the horizon allow particles
to be accreted onto the black hole (types Ia—c). On the other hand,
regions extending to large distance represent the case when par-
ticles can move far out (e.g., along the axis in type Id). Curves
of constant energy suggest a different destiny of a particle on
the off-equatorial circular orbit when its energy increases above
the level of corresponding potential minimum. In type Ia, the
symmetric off-equatorial minima first merge via an equatorial
saddle point, allowing stable cross-equatorial motion. Increas-
ing its energy further, the particle would reach another saddle
point in the equatorial plane which allows it to fall freely onto
the horizon. The class Ib does not permit any cross-equatorial
motion—off-equatorial confinements connect to the horizon
directly when the energy increases sufficiently. The topology
of type Ic allows merging of off-equatorial lobes; however, at
a merging point, these are already opened toward the horizon
and the motion in the cross-equatorial confinement is thus never
stable. Type Id allows stable cross-equatorial motion. As the
energy increases sufficiently the isopotential curve opens and
particles may escape to infinity (unlike the case of Ia when they
felt onto horizon instead).

Only two cases (namely, types Ia and Id) exhibit the transition
from the bound off-equatorial motion to the bound cross-
equatorial motion when the energy is increased. Remaining
types Ib and Ic do not allow closed cross-equatorial structures.
In the following, we analyze the impact of the inclination of
the magnetic field on the originally regular off-equatorial orbit
of type Id. In particular, to distinctly illustrate its influence we
depart from the very same configuration as we used in Kopéacek
et al. (2010b). Namely, we explored the orbit with parameters
L =6,a =09 g0 =1, gB. = 1, and with the initial

condition: r(0) = 3.68, 0(0) = 1.18, ¢(0) = 0, and u"(0) = 0.

For E = 1.58 we observed regular off-equatorial motion while
with E = 1.75 the motion was cross-equatorial and chaotic.
First, we analyze the former case while the latter is inspected in
Section 3.2.

Gradually increasing the inclination B, /B and checking if
the motion remains allowed and the orbit is still bound, we
conclude that up to B,/B. =~ 0.05 of the allowed region
remains closed, for values up to B,/B. = 0.07, it still exists
as an open region allowing the particle to escape while even
higher values forbid the motion for given parameters. In the
left panel of Figure 2, we illustrate two examples of analyzed

trajectories in the three-dimensional view. Most importantly,
it shows that the inclination of the field extends the allowed
region and converts the off-equatorial orbit into cross-equatorial
in this case. Moreover, it suggests that the originally regular
trajectory turns chaotic, which we confirm by means of the
maximal Lyapunov exponent x in the right panel of Figure 2.

For very small inclinations up to B,/B, = 0.003, the
trajectory remains regular and x tends to zero limit (log x
decreases linearly as a function of loga). In particular, for
the case of B,/B. = 0.0025, we have checked this trend by
integrating up to A = 2 x 10”. However, setting B,/ B. = 0.0035
the exponent y attains a positive value which marks the onset of
chaos. The asymptotic value of x of the given orbit further rises
as the inclination increases. For B,/B. = 0.01, the trajectory
becomes cross-equatorial and x almost saturates as it does
not significantly rise when the field is further inclined. The
trajectory is now fully chaotic as its Lyapunov time roughly
equals the orbital period #, ~ T, ~ 100 (numerically averaged
along the actual orbit—see Appendix B). Values B,/B; > 0.05
correspond to the opened, allowed region and the particle
typically escapes before A = 10°.

The analyzed example reveals the typical behavior of the
originally regular off-equatorial orbits perturbed by inclining the
magnetic field. Most importantly, it shows that the inclination
of the field induces continuous transition to chaos as measured
by means of the maximal Lyapunov exponent x .

3.2. Chaotic Cross-equatorial Orbits

Here we inspect the impact of the inclination on the cross-
equatorial orbit which is already chaotic in the aligned field.
We choose to analyze the example analogical to the previous
case of the off-equatorial orbit. Namely, we start with the
trajectory which has a higher energy E = 1.75 while all other
parameters and initial conditions remain fixed at the values
specified above. In the left panel of Figure 3, we compare
the three-dimensional views of two typical chaotic orbits: the
original aligned trajectory (red) and an inclined trajectory with
B, /B. = 0.15 (blue). Higher inclinations are not permitted for
the given setup. Inclined field lines are traced by the trajectory,
which clearly shows the direction of the field. However, besides
the inclination of the trajectory, there is no apparent qualitative
difference between the compared orbits in Figure 3.
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Figure 2. Left panel shows the three-dimensional view of a regular off-equatorial orbit in the aligned field (red trajectory) which turns cross-equatorial and chaotic
as the field inclines (blue orbit: B;/B. = 0.07). Common parameters of the system are a = 0.9, E = 1.58, ¢Q = 1, ¢ B. = 1, and the initial condition is set as
follows: r(0) = 3.68, 6(0) = 1.18, ¢(0) = 0, u"(0) = 0, and 7,,(0) = 6. Gray surface marks the horizon of the black hole. In the right panel, we compare Lyapunov
exponents of these trajectories which only differ in the inclination of the field. For a small value of the inclination angle the trajectory remains regular, however, for
B, /B 2 0.003 the chaos sets on. Then the gradual growth of the largest Lyapunov exponent x is observed as the inclination of the field increases. For B, /B. ~ 0.01

the growth almost saturates. A logarithmic scale is used for the both axes.

(A color version of this figure is available in the online journal.)

yM] x [M]

— B /B =0.07
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— B /B =0.05
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— B /B_=0.01
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B /B_=0.005
Xz
- B /B =0
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Figure 3. In the left panel, two chaotic cross-equatorial orbits with different inclinations of the background magnetic field are shown. The red trajectory is followed
by the particle in the aligned field (B, /B- = 0), while the blue one is driven by the considerably inclined field (B, /B. = 0.15). Energy is set as £ = 1.75 while other
parameters are kept at values specified in Figure 2. Besides the inclination of the whole trajectory, the orbits under comparison do not exhibit any significant qualitative
difference. Fully chaotic orbit appears dynamically indifferent to the inclination of the field which is confirmed in terms of corresponding Lyapunov exponents of these
trajectories in the right panel. We observe that x does not considerably change when the inclination increases. Unlike the previous case where the regular trajectory
was perturbed by inclining the field, here the values of x do not produce an ordered sequence (higher inclination does not mean higher x in general) and remain almost

indifferent to the field’s inclination. Chaoticity of the fully chaotic trajectory (1L = T,,) cannot be further increased by an additional perturbation.

(A color version of this figure is available in the online journal.)
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Figure 4. Three-dimensional view of three equatorial orbits differing in the inclination of the background magnetic field is presented in the left panel. The red orbit
is regular and it is followed by the particle in the aligned field (B,/B. = 0), while for the inclined fields we detect chaotic dynamics (green: B,/B. = 0.05, blue:
B./B. = 0.1). Parameters of the system are « = 0.9, E = 1.24, ¢Q = 0, ¢ B. = 1, and the initial condition is set as follows: #(0) = 3, 8(0) = /2, ¢(0) = 0,
u"(0) = 0, and 7,(0) = 5. Gray surface marks the horizon of the black hole. In the right panel, we compare the behavior of the maximal Lyapunov exponents
corresponding to these trajectories. Even for very small inclination angles the orbit turns chaotic. Gradual growth of the largest Lyapunov exponent x is observed as

the inclination of the field increases. A logarithmic scale is used for both axes.
(A color version of this figure is available in the online journal.)

Quantitative comparison in terms of the Lyapunov exponent
x confirms that, in this case, the inclination of the magnetic field
does not significantly change the dynamics (right panel of Fig-
ure 3). We observe that unlike the previous case of off-equatorial
regular orbits, here the asymptotic values of x are not stratified
with respect to the inclination angle. A higher inclination angle
does not necessarily correspond to a higher maximal Lyapunov
exponent x . Changing the inclination between B,/B, = 0 and
B,/B. = 0.07 results in comparable asymptotic values of .
We conclude that once the system is fully chaotic, the additional
perturbation consisting in the inclination of the field does not
increase the chaoticity of the system.

3.3. Regular Equatorial Orbits

We demonstrate the influence of an inclined magnetic field on
the originally regular orbit in the equatorial potential well. Here
we choose the orbit around the black hole without an additional
electric charge as a representative example.

Parameters of the trajectory area = 0.9, E = 1.24,¢Q =0,
gB. = 1, and the initial condition is set as follows: r(0) = 3,
6(0) w/2, p(0) = 0, u"(0) = 0, and 7,(0) = 5. In the
given setup, the trajectory remains bound for inclinations up to

B,/B. = 0.1 and the motion is allowed for B,/B. < 0.15.

The three-dimensional view of the aligned trajectory (red) and
two orbits in the oblique field with different inclinations (green:
B,/B. = 0.05, blue: B,/B, = 0.1) are compared in the left
panel of Figure 4. For the aligned field, this orbit exhibits
regular dynamics and the corresponding trajectory draws an
axisymmetric pattern. The oblique field gradually inclines the
trajectory as a whole and introduces apparent signs of disorder
whose symptoms increase with the increasing inclination.

The comparison of Lyapunov exponents x corresponding to
orbits with different inclinations is given in the right panel
of Figure 4. In this case, only the aligned trajectory remains

truly regular with log x falling linearly to zero as a function of
log A. Even for a very small inclination of B,/B. = 0.0005,
the trajectory eventually leaves the trend of linear decrease of
log x and approaches a positive value in the limit, which is a
hallmark of the chaotic dynamics. With the growing inclination,
the limiting value of x gradually grows. More inclined field
triggers stronger chaos as measured by the exponent . We note
that in this case, the convergence of x is remarkably smooth for
all allowed inclinations which we observed in the case of off-
equatorial orbits (Figure 2) only for smaller inclinations which
were inducing non-saturated chaos.

The given example of the originally regular equatorial orbit
affected by inclining the magnetic field illustrated the high
sensitivity of regular dynamics upon the axial symmetry of
the system. In this case, breaking the symmetry inevitably
brings chaotic features to the system regardless the value of
the inclination.

In Figure 5, we compare asymptotic values of x as a function
of the inclination of the field for all three types of orbits analyzed
above and illustrated separately in Figures 2—4. The originally
off-equatorial, regular orbit (red curve) shows a fast onset of
chaos as the inclination increases and cross-equatorial motion
becomes possible. However, the growth of x quickly saturates
as the system finishes the transition to the chaotic regime (at
B./B. =~ 0.01) and, beyond this point, the value of x does
not grow considerably with the increasing inclination of the
field. Departing from the cross-equatorial orbit which is already
fully chaotic in the aligned field B,/B. = 0, we observe no
systematic reaction of y when the field gradually inclines (blue
curve). The system in fully chaotic mode does not respond
to the additional perturbation by increasing its chaoticity. The
originally regular equatorial orbit (green plot) undergoes a
gradual growth of chaoticity as the field inclines. Nevertheless,
the value of x does not saturate within the range of allowed
inclinations (B, /B; < 0.15).
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Figure 5. Asymptotic value of the maximal Lyapunov exponent x (in the
logarithmic scale) as a function of the inclination of the field B, /B. (tangent
of the inclination angle) for three representative cases which were discussed
in Figures 2-4. The red curve shows the behavior of the exponent x of the
originally regular, off-equatorial orbit (parameters specified in Figure 2). The
response of the cross-equatorial chaotic orbit is plotted by the blue curve (orbit’s
parameters in Figure 3), and the originally regular equatorial orbit from Figure 4
is represented by the green line. We note that the inclinations we considered in
the analysis generally correspond to small inclination angles of the field given
as arctan(B, /B.), e.g., the inclination of B, /B. = 0.1 corresponds to the angle
of ~6°.

(A color version of this figure is available in the online journal.)

4. DISCUSSION

The scenario investigated within this paper is idealized and its
direct applicability for interpretation of observed astrophysical
phenomena is limited. However, the significance of our model
lies in its ability to demonstrate the effect of combined magnetic
and strong gravitational fields onto the dynamics of charged
matter in a very clear form since the matter is treated as
collisionless and thus its motion is governed solely by external
fields. Under such circumstances, we raised the fundamental
question of whether a given combination of fields typically leads
to chaotic or regular dynamics of orbiting particles.

In the context of this analysis, another natural question
arises—whether it is possible to observationally distinguish
imprints of ordered or chaotic dynamics occurring in the
investigated system. In general, the link between chaos on a
microscopic scale and the macroscopic behavior of matter has
not yet been fully understood and it represents an open problem
of statistical mechanics. While, in some systems, the relation
of transport coefficients (e.g., viscosity, thermal, or electric
conductivity, etc.) to Lyapunov exponents is observed, there are

also non-chaotic systems that show transport phenomena and .

thus suggest that chaos might not be necessary for the robust
statistical behaviors (see e.g., Castiglione et al. 2008; Cencini
et al. 2008, 2010 and references therein).

Nevertheless, we are in a slightly different situation as we
do not build a statistical ensemble of particles to derive its
macroscopic properties in the framework of kinetic theory. As
we rather consider a set of non-interacting particles, can we
expect them to give characteristic imprints of their dynamic
regime on the generated radiation? We believe that the answer
is, at least in principle, positive. Frequency analysis of bound
trajectories shows a clear difference between order and chaos
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(Contopoulos 2002; Lukes-Gerakopoulos et al. 2010). While
regular trajectories have discrete power spectra with prominent
lines at their fundamental frequencies, the chaotic ones instead
show continuous spectra. In the case of charged particles
which radiate when accelerated, such distinction in the spectra
of dynamic frequencies inevitably translates into a frequency
composition of generated electromagnetic signals. Determining
the actual form of resulting electromagnetic spectra would,
however, require a detailed analysis, which is beyond the scope
of this paper.

We also note that the general problem of detecting chaos and
quasiperiodicity in experimental data with noise has been stud-
ied thoroughly (see e.g., Sprott 2003; Nayfeh & Balachandran
1995) and a number of relevant methods have been developed
over the last decades. Not listing all standard techniques, we only
mention a more recent method of recurrence analysis (Marwan
et al. 2007), which appears very useful for this task.

The crucial question remains: whether the electromagnetic
signal generated by our system is strong enough to deliver
characteristic imprints of order and chaos to the observer. In
Appendix B, we thus calculate the power P of synchrotron radi-
ation generated by charged particles orbiting in the confinements
discussed above. The total power of this radiation as given by
Equation (B8) is negligible. The obvious way to substantially
enhance the power output is to accelerate the particles to ul-
trarelativistic velocities since P scales with Lorentz factor y
as P o y*. In our model, however, the velocity (B1) is not a
free parameter and it seems that ultrarelativistic velocities are
beyond its scope. Estimating the bremsstrahlung resulting from
Coulomb collisions (free—free radiation) using Equation (B9),
we find this radiative process to be substantially more efficient in
given circumstances. However, unlike synchrotron radiation, we
do not expect the bremsstrahlung to encode imprints of dynamic
regime of colliding particles in its spectrum.

We have shown that a charged matter in densities consistent
with our collisionless description does not emit a significant
amount of synchrotron radiation in which we could distinguish
imprints of regular or chaotic dynamic regime of emitting parti-
cles. The mechanism of inverse Compton scattering of thermal
photons emitted from the accretion disk on electrons trapped in
the confinements discussed within this paper may be more ef-
fective in delivering observational imprints in detectable signals
(ongoing work). The main motivation of our current analysis
was to study the chaoticity in the dynamics of charged matter in
accreting black hole systems as a fundamental theoretical aspect
of its physics.

5. CONCLUSIONS

Regularity is a remarkable property of motion around black
holes. We addressed the question of transition from regular to
chaotic dynamics by including the effect of a magnetic field,
and we studied the importance of misalignment between the
direction of the magnetic field and the spin of the black hole.

In this paper, we investigated some aspects of dynamics in
the test particle model of the black hole magnetosphere. In
particular, we considered a system consisting of a rotating black
hole embedded in the large-scale ordered magnetic field. In our
previous studies (Kovér et al. 2010; Kopadek et al. 2010a),
we found that in the special case of an aligned field (i.e.,
the magnetic field was symmetric with respect to the rotation
axis), the motion of matter in off-equatorial confinements was
typically regular. The chaotic dynamics usually appeared for
cross-equatorial orbits. Considering the equatorial potential
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wells instead, we observed the dominance of regular dynamics
for energies in a certain limited range, followed by a continuous
transition to the mostly chaotic regime when the energy was
gradually increased above this range.

Here we generalized our model by considering oblique
magnetic fields. In particular, we investigated the impact of
the inclination upon the dynamics of charged matter orbiting
around a black hole in three distinct types of confinements,
namely, in off-equatorial, cross-equatorial, and equatorial lobes.
Using the maximal Lyapunov exponent x as a basic indicator of
chaotic dynamics, we found that regular orbits are, in general,
highly sensitive to the perfect alignment of the field. The
inclination of B,/B, = 0.01 (=30') was typically sufficient to
perturb the regular dynamics and introduce prominent chaotic
features which we illustrated in several representative examples.
In particular, we found that in the case of originally regular,
off-equatorial motion, the system remains regular only for
very small inclinations (up to B,/B,; =~ 0.003 in analyzed
example) and with increasing inclination it quickly shifts to
the chaotic regime. Considering the class of regular equatorial
orbits instead, we observed that these did not oppose the
perturbation at all as they became chaotic for inclinations as low
as B,/B. ~ 0.0005. Also, in this case, the system undergoes a
gradual transition to full chaos as the inclination increases. On
the other hand, if the original trajectory is already fully chaotic in
the aligned configuration, the further perturbation to the system
by inclining the field does not significantly affect the dynamics.
The trajectory as a whole inclines along the field (see Figure 3),
however, the chaoticity as measured by the Lyapunov exponent
x does not increase further.

We conclude that within the given model, the stability of
the regular motion of charged particles depends critically on
the perfect alignment of the large-scale magnetic field with the
rotation axis of the black hole. Once the field is slightly inclined
and the symmetry of the system breaks, the chaotic regime
dominates the dynamics.

O.K. is grateful to obtain support from the Czech Science
Foundation (GA CR ref. 202/09/0772) and acknowledges the
postdoctoral program of the Czech Academy of Sciences. V.K.
acknowledges the Czech Science Foundation (13-000703).

APPENDIX A
EFFECTIVE POTENTIAL

In the classical mechanics, the notion of the effective potential
is usually introduced when dealing with the central force
problem which concerns the motion of the particle of negligible
mass (test particle) which is attracted or repelled by a static
massive center. The magnitude of this force depends solely
on the distance from the center. A prominent instance of

such a setup in which the central force is represented by .

the gravitational attraction is a Kepler problem (and a related
gravitational two-body problem which can be reformulated as
two one-body problems, one trivial and the other of the Kepler
type). The effective potential Vg is then given as a sum of
the gravitational potential and the centrifugal term related to
the angular momentum L of the orbiting body. Analysis of the
effective potential provides valuable overall information about
the dynamics without needing the actual integration of particular
trajectories. Its significance arises from the defining relation
€ — Vegr = T, where € is the classical total energy of the particle
and T represents its kinetic part which comprises only the radial
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term m72/2 in this case since ¢ is expressed in terms of L.
Thus, the effective potential (as a function of r and L) expresses
the energy of the particle at which the radial turning points
occur (apocenter and pericenter in the case of bound orbits). It
defines the boundary (in the extended configuration space) of
the regions of the allowed motion. In particular, it allows us to
locate stable, circular orbits which correspond to the minima of
the effective potential.

In general relativity, however, we have no clear distinction
between the kinetic and potential energy. Nevertheless, in many
cases, we may still derive function analogous to the classical
effective potential which allows us to explore the dynamics
of test particles and, in particular, to locate regions of stable
orbits. In the general case of the charged test particle of the
rest mass /m and charge ¢ in the spacetime with metric g** and
electromagnetic field A, we depart from the super-Hamiltonian
‘H whose conserved value is given by the normalization of the
four-momentum:

2H = g" pupy = g, — qA)(T, — qAy) = —mP. (Al)

In the special case of the stationary and axisymmetric back-
ground of a Kerr or Kerr—Newman black hole with an additional,
stationary, electromagnetic test field obeying the same symme-
try in which 7, = L and 7, = —E are constants of motion
(system therefore has two degrees of freedom) and neither g,
nor A, depend on Boyer-Lindquist coordinates ¢ and ¢, we
obtain by straightforward manipulations

z<(—1’%+(pﬁ)2) =«E’+BE +7, (A2)

where

e — gn
B=2[g"(L —qA,) — g"qA/]

2

y = —8g%(L—qA,)" — &"q*A] +28'%q A (L — qA,) — m”.
(A3)

Since both coefficients X and A are positive above the outer
horizon r, to which region we restrict our study, the zero point
of the left hand side of (A2) occurs at the simultaneous turning
point of motion in both the radial and latitudinal direction,
and defines the boundary of allowed motion. A function which
specifies the value of energy corresponding to the turning point
can be regarded as a generalization of the classical effective
potential V. We can therefore express the two-dimensional
effective potential Ve (r, 6) as follows:

_p+ /Py

o (A4)

Vett =
where the positive square root has to be chosen to correspond
with the future-pointing four-momentum (Misner et al. 1973, p.
909). Since @ > 0 above the horizon the motion is allowed just
if E 2 Veg.

A method of effective potential has been applied to locate
confinements (both equatorial and off-equatorial) of charged
matter in several stationary and axisymmetric models in our
previous works (Kovar et al. 2008, 2010, 2013; Kopacek et al.
2010a). The potential Vi was investigated as a function of
two configuration variables r and 6, angular momentum L, and
particular parameters of the given system.
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In the context of present paper, our question is whether
we could also apply this method for the system of three
degrees of freedom in which the axial symmetry is broken and
A, = A, 0, p)butg,, = g,,(r, 8).Inthis case, the trajectory
manifold spans five out of eight dimensions of the phase space
due to the stationarity and autonomy of the system. Effective
potential reduces the number of dimensions by imposing the
constraint of type (p*)> = 0 which locates the turning point
in u-direction. In this case, we seek the simultaneous turning
point in all three directions r, 6, and ¢ which would result
in two-dimensional submanifold. For a fixed value of ¢ we
should therefore obtain one-dimensional isopotential curves
specifying the allowed region in a given meridional plane
described by coordinates r, & as we previously did in the case
of axisymmetric systems. Indeed, we can derive the expression
formally analogous to (A2):

Z<(pA)— +(P9)2> +gw(17w)2 =a*E*+B'E+y*, (AS)

where the coefficients are now given as

a*= —g"(1+g"%g,)

B = Z[grw(gw)z(ﬂ'w —qAy,) — 8 qA(1+8"%gy)]

Y = — 878" g,y — g A, — 8" P AX(1 + g%y,
+2(8")81,q Ay — qA,) — m?. (A6)

The left-hand side of (AS5) has the proper form necessary for
expressing the effective potential (g, is positive). Nevertheless,
the coefficients 8* and y* depend on the azimuthal component of
canonical momentum 1, which used to be the integral of motion
L in the axisymmetric system, however, here it changes along the
trajectory. The volution of 7, is not known a priori and one has
to integrate the equations of motion of a given particle to reveal
it. Therefore, it is not possible to express the effective potential
from the above equation as a function of r, 8, and ¢ coordinates
(and parameters of the metric and electromagnetic field). We
conclude that the given technique leads to the derivation of the
effective potential only in the case of aligned magnetic fields.
For oblique fields, the method fails to provide the potential since
the simultaneous turning points and the boundaries of allowed
regions are actually not captured by resulting formula (AS5).

APPENDIX B
RADIATION POWER

It has been proposed that a distinction between chaos and
regular motion in a system of radiating particles can be revealed
in the power spectra of the resulting signal. Regular trajectories
will contribute to localized features in the power-density spec-

trum (PDS), which disappear when chaos prevails. To assess

the detectability, we first need to estimate the strength of the
outgoing signal from the system.

Here we estimate the power of synchrotron radiation gener-
ated by charged particles orbiting in confinements discussed in
this paper. To this end, we make approximations whose appro-
priateness will be discussed.

First, we pick one individual trajectory (typical orbit) whose
properties will characterize the whole ensemble of particles in
a given confinement. We choose an equatorial trajectory with
parameters a = 0.9, E = 1.24,9q0Q = 0,¢gB. = 1, ¢B, = 0,
and initial condition (0) = 3,6(0) = 7 /2, ¢(0) = 0,u"(0) = 0,
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and 7,(0) = 5 (Figure 4). For this trajectory, we determine
linear velocity v') with respect to the locally, non-rotating frame
(Bardeen et al. 1972) with the tetrad basis ¢}’ as follows:
i (i)
i) = u® _ elil u

BTG
u g“ ut

(B1)
Calculating v over a sufficiently long integration period (/100
revolutions around the center), we find that the mean of the
azimuthal component, which dominates the motion, reads v, =
[(v¥)| & 0.1c. Since we only consider small inclinations of
the magnetic field, the azimuthal component v’ approximately
equals the component perpendicular to the field v, also in the
case of oblique fields. The corresponding Lorentz factor reads
y =~ 1.005 ~ 1 which justifies the cyclotron regime.

As a next step, we specify the charge of the particles under
consideration as well as the strength of the magnetic field,

_ g B:csi
—
(M—O) 1472 m

where the quantities without subscript SI are dimensionless
(expressed in geometrized units and scaled by mass of the
black hole M) and the length 1472 m reflects the solar mass
in geometrized units, Mgy = 1472 m. Inserting the value
gB. = 1 and fixing the specific charge ¢s; to electron,
ie., gs = 1.76 x 10" Ckg™!, we find that for the black
hole of M = 10 Mg, the corresponding magnetic field reads
By = 1.16 x 1077 T. Such a value is consistent with non-
thermal filaments in the Galactic Center (Ferriere 2010; LaRosa
et al. 2004).

The Larmor radius of the particles’ gyration ry, is then given

as follows:
1472 m svy M
q B: < 4 ) <M®> ’

which reads (rp)s; = 1472 m for electron with vy = 0.1c
and M = 10 Mgy. However, we stress that, in our case, it
is not the actual radius of the orbit which is determined
not only by the magnetic field, but also by the gravitational
pull of the black hole. Indeed, the radius of our typical
orbit roughly equals »(0) = 3 which corresponds to rg; =
3(M/Mg)1472 m = 44 km. The azimuthal period of a
typical orbit (computed as a mean of 2100 revolutions) reads
(Ty)st ~ 0.26(M/My) ms = 2.6 ms while the latitudinal
period is (Ty)g; = 0.16 (M /M) ms = 1.6 ms. Also checking
for trajectories with nonzero magnetic inclinations within the
considered range of angles, we find that these values vary
up to ~5%.

We need to determine the limiting number density of particles
n, which is consistent with the collisionless description. The
general formula relating density n to the mean free path /¢, the
cross section of relevant interaction o, and the corresponding
impact parameter b reads

(B2)

(ru)s1 = (B3)

1 1
n= =

=—=—, B4
ols wb2l; (B4)

where all quantities are in physical units (we omit the subscript
SI for the rest of the discussion). As already commented on in
Section 1, we demand the particle mean free path to (at least)
equal the characteristic length scale of the system. Therefore we
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set Iy = (M/Mg) 1472 m =~ 15 km for the black hole of ten
solar masses. The interaction between particles is described as
a classical Coulomb collision.

The analysis of elastic Coulomb scattering of two equal
particles of mass m and charge ¢ reveals (e.g., Jackson 1999)
that the deflection angle x of the incident particle with impact
parameter b and original velocity v (measured in the laboratory
frame in which the target particle is initially at rest) reads

27 gomugh

ey (B5)
FR

coty =

where g9 = 8.85 x 107'> Fm™' denotes the permittivity
of the vacuum. The relative loss of kinetic energy of the
incident particle (which is transferred to the target particle)
p = (EY, — Efmaly/E2. equals p = sin® x. The number density
n may thus be expressed as follows:

2w eomuy :|2 (B6)

1
n—=— ————————————————
wle |:cot(arcsin pl2)g?

Setting vy = v, = 0.1c, electron mass m = 9.11 x 1073 kg,
electron charge ¢ = 1.6 x 107° C and /; = 15 km, we obtain
the density n as a function of p. If we allow the particle to lose
maximally 1 percent of its kinetic energy in a single collision and
set p = 0.01 (maximal deflection angle x = 6°), the resulting
number density of electrons is n & 6.8 x 10'7 m~3.

The total power of radiation P emitted by non-relativistic
point charge g with acceleration a is given by Larmor formula
(e.g., Rybicki & Lightman 2004)

5202

T 6mwegcd (B7)
The special case of radial acceleration (perpendicular to the
velocity) is usually denoted as cyclotron radiation. This is often
produced by charges accelerated solely by the Lorentz force in
the magnetic field, and in such a case one sets @ = v]/rp in
a Larmor formula. In our case, however, the particles are also
accelerated gravitationally, and we obtain the actual acceleration
a by approximating our typical orbit by a trajectory of uniform
circular motion and setting a = 2rv, /T,,.

To obtain the radiation power of whole ensemble of N elec-
trons in the confinement, we employ the dipole approximation
(Rybicki & Lightman 2004) which allows us to ignore differ-
ences in the retarded times of each particle as long as the typical
size of the system L = (M /Mg) 1472 m = 15 km, and the typ-
ical timescale of changes within the system, t = T, = 2.6 ms,
fulfills = > L/c. The overall radiation power is then given
as P,y = NP = nVP. The volume of the confinement V
is estimated as the interior of the torus of inner radius r =

2.5(M/Mg) 1472 mand outerradius R = 3.5(M /Mg) 1472 m .

which reads V &~ 5 (M/Mg)* x 101 m? = 5 x 10" m’.
Putting all the pieces together we obtain the total radiation
power as

2
Pt =nVP = <@) Watt.
q

(B8)

A counter-intuitive dependence on the specific charge of
particles ¢ is due to the fact that we constrain the number density
by only considering Coulomb collisions which become less
effective with decreased specific charges of colliding particles.
The validity of the above formula is thus limited to the particles
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with ¢ > 1. The case of particles with lower ¢ would demand
further discussion. We also note that although the volume of
the confinement increases as V oc M>, the radiation power of a
single particle decreases as P o« M~ and the number density
as n o« M~'. Thus, the total power Py, is small, and it does not
scale with the mass of the black hole M.

Besides the radiation related to acceleration due to external
fields, we may also estimate the power of bremsstrahlung
(free—free radiation) of colliding particles (Jackson 1999)

[76 2 1 1)
(4reg)® 3¢3 m2ugh® 1

M m\* (q t
~ — ) (£) 4.6 x 10> Watt,  (B9)
10 Mg e q

where we substituted the value of impact parameter b which
corresponds to the highest-allowed relative loss of kinetic energy
p = 0.01. A substantially higher value compared to (B8) looks
more promising, nevertheless, and in this case we do not expect
the resulting radiation to encode dynamical frequencies of the
orbit in PDS, and the chance of distinguishing dynamic regime
of colliding particles is thus minimal.

Pt =nvpPf =nv

tot
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