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Outline

> Polar-scattered Seyfert 1 galaxies

> why are they interesting?

> reasons for their large X-ray spectral variability

> Fairall 51: archival X-ray observations

> Fairall 51: new observations with Suzaku

> results of the spectral analysis

> constraints on the location of the X-ray absorber

> Conclusions & discussion
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Polar-scattered Seyfert 1s

» Who are they?

» Seyfert 1 galaxies with high optical polarisation
(like Seyfert 2 polarisation spectra)




Polar-scattered Seyfert 1s

represent a bridge between type 1 and type 2

galaxies

> hlghly X-ray variable at soft X-rays:
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Polar-scattered Seyfert 1s

Illustration of the geometry:
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Fairall 51 (ESO 140-43)

broad lines in the optical spectrum — Seyfert 1
high degree of polarisation: 5 — 13% (red — UV)

. the highest polarization measured for a type-1 object
X-ray bright (about 1 milicrab)

»  observed twice by XMM-Newton (2005, 2006), Ricci+,10

short-term variability suggested from two Swift
observations separated by 5 days (Ricci+,10, Beuchert+,13)




XI\/IM and SW|ft observations
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Suzaku observations

~ four observations performed in Sep 2013 separated
by 1.5, 2 and 5 days (exposure 30 ks each)

> flux variability:

@ 0.5-10 keV
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Spectral comparison
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Spectral comparison
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X-ray continuum

»dominated by a power-law emission with I' = 2
» two components:

1) direct (primary) — affected by a warm absorber

2) scattered (soft)

unaffected by warm absorber

dominates in soft X-rays around 1 keV where is almost no
spectral variability detected

> reflection continuum

> Compton hump at = 15keV (lower energy than usually)
redshifted by the relativistic effects?
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Properties of the absorbers

- primary power law affected by at least 3 absorbers

~consistent with Ricci+,10 based on XMM-Newton data
> log& =1-4ergcm2st
» cold/least ionized absorber is the most variable one
absorber ionization column density outflow velocity
log & [erg cm2 s71] [1022 cm™?] [km s1]
1 (least ionized) 1.2+0.1 variable, 2.5 -8 -
2 (low ionized) 1.6+0.1 variable (?),5-9

3 (warm) 3.6+0.1 30+ 10 1300 + 600




Variability of the absorber
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Spectral model
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Model comparison
between the observations
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A problem at E < 0.7 keV?
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Flux and spectral variability

flux changed by a factor of two

spectral variability is due to the change of the column

density of the variable (least ionized) absorber
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Location of the variable absorber

> assuming a cloud orbiting with the Keplerian velocity

. 2 2 2
v = [ We get the distance: R = 6M S5 ~ GM 5

~ the density can be constrained from the ionization:

vl

- we get relation for the distance:
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Location of the variable absorber

~normalized to typically measured values we get: R ~ 2.66 x 10/
1

M L ¢ £ SIS T L AN SN 42
7 43 -1 i R (_) 22 ) cm
10°'M ,\10™ erg s ergcm—“s 1Ms 10°“ cm

> mass: M ~ 3 x 10”M, (Padovani & Rafanelli, 1988)

. we measured: L ~4 x 108 ergs™ 1, €~ 15ergcm ?s71,
At ~ 0.45 Ms, and AN, ~ 5x10%? cm™

.~ we get for the distance: R = 7 x 10 cm = 0.02 pc
»  typical distance of the Broad Line Region (Peterson+, 04)

. the density: p = 5 x 108 cm=also typical for BLR

R RS



Note on the origin of BLR clouds

> dusty winds by Czerny & Hryniewicz (2011)

- BLR regions are located where the accretion disc
temperature is close to the dust sublimation temperature

> dusty winds arise up but once they get in the strong
radiation field they are destroyed

> lower flux — winds can get further, the clouds
cover more radiation from the centre

~lonized absorber might serve as a protection
against the illumination from the centre




Relativity...

> FERO = Finding Extreme Relativistic Objects
- Is Fairall 51 extremely relativistic?

» its spectrum is rather complicated to measure exact
profile of the iron line red wing

»  Compton hump at = 15 keV is redshifted

> relativistic reflection improved significantly the fit




Black hole spin and inclination
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Conclusions

> Fairall 51 revealed a complex structure of the absorbing gas

. atleast 3 zones with different ionization log & =~ 1 —4 ergcm?s

» spectral variability is due to the least ionized absorber

> characteristic time scale of the variability ~ week

> this implies location within the Broad Line Region

> relativistic reflection

> needed to model the Compton hump at ~ 15 keV

GM

> black hole spin measured as: a = 0.8 =3

- Inclination: i = 20 degrees — not consistent with the expectations from
the intermediate galaxy type (45 degrees), also scattered part?
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