Fairall 51:

X-ray variable absorber within the Broad Line Region

Jiří Svoboda

with M. Guainazzi, A.L. Longinotti, T. Beuchert, J. Wilms and E. Piconcelli

7th FERO meeting, Kraków, Poland, 30/08/2014

Outline

Polar-scattered Seyfert 1 galaxies

- > why are they interesting?
- reasons for their large X-ray spectral variability
- Fairall 51: archival X-ray observations
- Fairall 51: new observations with Suzaku
 - results of the spectral analysis
 - constraints on the location of the X-ray absorber
- Conclusions & discussion

Polar-scattered Seyfert 1s

> who are they?

Polar-scattered Seyfert 1s

- represent a bridge between type 1 and type 2 galaxies
- highly X-ray variable at soft X-rays:

Polar-scattered Seyfert 1s

illustration of the geometry:

Miniutti+, 14

Fairall 51 (ESO 140-43)

- > broad lines in the optical spectrum → Seyfert 1
 > high degree of polarisation: 5 13% (red UV)
 > the highest polarization measured for a type-1 object
 > X-ray bright (about 1 milicrab)
 - > observed twice by XMM-Newton (2005, 2006), Ricci+,10
- short-term variability suggested from two Swift observations separated by 5 days (Ricci+,10, Beuchert+,13)

XMM and Swift observations

Suzaku observations

four observations performed in Sep 2013 separated
 by 1.5, 2 and 5 days (exposure 30 ks each)

Flux variability:

Spectral comparison

Spectral comparison

X-ray continuum

- dominated by a power-law emission with $\Gamma \approx 2$
- > two components:
 - 1) direct (primary) affected by a warm absorber
 - 2) scattered (soft)
 - unaffected by warm absorber
 - dominates in soft X-rays around 1 keV where is almost no spectral variability detected
 - reflection continuum
 - > Compton hump at ≈ 15 keV (lower energy than usually)
 - redshifted by the relativistic effects?

Properties of the absorbers

> primary power law affected by at least 3 absorbers

- consistent with Ricci+,10 based on XMM-Newton data
- > $\log \xi \approx 1 4 \operatorname{erg} \operatorname{cm}^{-2} \operatorname{s}^{-1}$
- cold/least ionized absorber is the most variable one

absorber	ionization log ξ [erg cm ⁻² s ⁻¹]	column density [10 ²² cm ⁻²]	outflow velocity [km s ⁻¹]
1 (least ionized)	$\textbf{1.2}\pm0.1$	variable, 2.5 – 8	-
2 (low ionized)	1.6 ± 0.1	variable (?), 5 - 9	-
3 (warm)	3.6 ± 0.1	30 ± 10	$\textbf{1300} \pm 600$

Variability of the absorber

Spectral model

Model comparison between the observations

A problem at E < 0.7 keV?

A problem at E < 0.7 keV?

Flux and spectral variability

- flux changed by a factor of two
- spectral variability is due to the change of the column density of the variable (least ionized) absorber

Location of the variable absorber

- assuming a cloud orbiting with the Keplerian velocity $v_K = \sqrt{\frac{GM}{R}}$, we get the distance: $R = GM \frac{\Delta t^2}{s^2} \approx GM \frac{\rho^2 \Delta t^2}{\Delta N_H^2}$
- > the density can be constrained from the ionization:

$$\rho = \frac{L}{\xi R^2}$$

we get relation for the distance:

$$R = \left[GM \frac{L^2 \Delta t^2}{\xi^2 \Delta N_H^2} \right]^{\frac{1}{5}}$$

Location of the variable absorber

> normalized to typically measured values we get: $R \approx 2.66 \times 10^{17}$

$$\left[\frac{M}{10^7 M_{\odot}} \left(\frac{L}{10^{43} \operatorname{erg} s^{-1}}\right)^2 \left(\frac{\xi}{\operatorname{erg} \operatorname{cm}^{-2} s^{-1}}\right)^{-2} \left(\frac{\Delta t}{1 \operatorname{Ms}}\right)^2 \left(\frac{\Delta N_H}{10^{22} \operatorname{cm}^{-2}}\right)^{-2}\right]^{\frac{1}{5}} \operatorname{cm}$$

> mass: M ~ 3 × $10^7 M_{\odot}$ (Padovani & Rafanelli, 1988)

≻

- we measured: $L \sim 4 \times 10^{43} \text{ erg s}^{-1}$, $\xi \sim 15 \text{ erg cm}^{-2} \text{s}^{-1}$, $\Delta t \sim 0.45 \text{ Ms}$, and $\Delta N_H \sim 5 \times 10^{22} \text{ cm}^{-2}$
- ▶ we get for the distance: $R \approx 7 \times 10^{16}$ cm ≈ 0.02 pc
 - ypical distance of the Broad Line Region (Peterson+, 04)
 - → the density: $\rho \approx 5 \times 10^8$ cm⁻³ also typical for BLR

Note on the origin of BLR clouds

- dusty winds by Czerny & Hryniewicz (2011)
 - BLR regions are located where the accretion disc temperature is close to the dust sublimation temperature
 - dusty winds arise up but once they get in the strong radiation field they are destroyed
- > lower flux → winds can get further, the clouds cover more radiation from the centre
- ionized absorber might serve as a protection against the illumination from the centre

Relativity...

- FERO = Finding Extreme Relativistic Objects
- > is Fairall 51 extremely relativistic?
 - its spectrum is rather complicated to measure exact profile of the iron line red wing
 - > Compton hump at ≈ 15 keV is redshifted
 - relativistic reflection improved significantly the fit

Black hole spin and inclination

Conclusions

- Fairall 51 revealed a complex structure of the absorbing gas
 - $\,>\,$ at least 3 zones with different ionization log $\xi\,\approx 1-4$ erg cm^2 s^{-1}
- > spectral variability is due to the least ionized absorber
 - characteristic time scale of the variability ~ week
 - this implies location within the Broad Line Region
 - relativistic reflection
 - $\,>\,$ needed to model the Compton hump at \sim 15 keV
 - > black hole spin measured as: $a \approx 0.8 \frac{GM}{C}$
 - → inclination: $i \approx 20$ degrees not consistent with the expectations from the intermediate galaxy type (45 degrees), also scattered part?