Neutron stars near the Galactic centre: their interaction modes and observable effects

Michal Zajaček^{1,2} Vladimír Karas¹, Ladislav Šubr²

¹Relativistic Astrophysics Group Astronomical Institute of the Academy of Sciences of the Czech Republic

²Astronomical Institute, Charles University in Prague

The 7th FERO meeting, Krakow

August 28, 2014

Supported by Grant Agency of the Charles University in Prague (#879113)

Topic: Galactic centre – low-luminosity (active) galactic nucleus

- Galactic centre complex environment: gas, dust, stars (late- and early-type stars + compact remnants), supermassive black hole (Eckart et al. 2005; Genzel et al. 2010; Genzel & Karas 2007)
- closest galactic nucleus to us (highest resolution obtained)
- Multiwavelength figure (Credit: NASA/ESA):

Topic: Galactic centre - low-luminosity (active) galactic nucleus

 ionized gas of the Minispiral is located in the sphere of influence of the SMBH:

$$r_{\rm SI} \approx 1.7 \left(\frac{M_{\bullet}}{4.0 \times 10^6 \, M_{\odot}}\right) \left(\frac{\sigma}{100 \, \rm km \, s^{-1}}\right)^{-2}$$

Figure : 3-mm continuum image by CARMA (left), synthetic image with the S-cluster (right).

Topic: Galactic centre – low-luminosity (active) galactic nucleus

- Figure : ALMA Band 6 (211 275 GHz) image line H30 α (231.9 GHz) integrated
- Figure : ALMA Band 3 (84 116 GHz) image line H39 α (106.74 GHz) integrated

Topic: Galactic centre – low-luminosity (active) galactic nucleus

Figure : S-cluster (left), 3D velocity for G2/DSO (right).

Importance

- probes of the ISM: dispersion measure, rotation measure
- Precise tests of GTR
- Inistory of the Galactic centre: end-products of stellar evolution

Open questions:

- What is the estimated number of NS in the innermost parsec?
- How do they interact with the surrounding medium?
- What are the possibilities of their detection?

Neutron stars near the Galactic centre

Mass segregation near Sgr A*

<u>Aims</u>

- constraining the number of NS
- studying the interaction with the environment: distribution of interaction modes
- possibility to reveal a part of the population indirectly: bow-shock structures

Basic characteristics of neutron stars

Neutron stars as gravimagnetic rotators

• NS characterized by: $M_{\rm NS}$, μ , and $P = 2\pi/\Omega$

Basic characteristics of neutron stars

Figure : P-P diagram. The data are taken from ATNF Pulsar Catalogue (Manchester et al. 2005) and SNR catalogue (University of Manitoba).

Estimates of the number of NS near Sgr A*

Figure : Spiral structure of the Galaxy and distribution of 2302 neutron stars in the *XY* Galactic plane. Data taken from the ATNF Pulsar Database (Manchester et al. 2005).

Estimates of the number of NS near Sgr A*

(i) estimates based on the enclosed dynamical mass and the IMF; $\alpha \in (0.4, 2.3)$ (Salpeter 1955; Morris 1993):

$$N_{\rm NS} = \frac{2-\alpha}{1-\alpha} \frac{m_{\rm NS2}^{1-\alpha} - m_{\rm NS1}^{1-\alpha}}{m_{\rm max}^{2-\alpha} - m_{\rm min}^{2-\alpha}} M_{\rm TOT}.$$

Estimated number for different parameters: $N_{\rm NS} = 11000 \pm 5000$

(ii) Considering density distribution (Lauer et al. 1995; Do et al. 2013):

$$\rho(r) = \rho_0 \left(\frac{r}{r_b}\right)^{-\gamma} \left[1 + \left(\frac{r}{r_b}\right)^{\delta}\right]^{(\gamma - \gamma_0)/\delta}$$
$$N_{\rm CR} = 4\pi \int_{R_{\rm dis}}^{R_{\rm gc}} n_{\rm CR}(r) r^2 dr.$$

• the order of $10^4 - 10^5 \leftrightarrow$ observed just one magnetar !?

Interaction with the gaseous medium near Sgr A* Interaction with the 'Minispiral'

- The HII region of Sgr A West ('Minispiral') is a promising target to search for the effects of interaction with propagating compact objects
- interactions with the three arms of the 'Minispiral': Keplerian model according to Zhao et al. (2009, 2010)
- $\bullet\,\sim$ 1%–10% of neutron stars should interact
- typical relative velocities: \sim 100–500 $km\,s^{-1}$

Figure : 'Minispiral' components (left) and model radial velocities (km/s).

Interaction with the gaseous medium near Sgr A* Interaction with the 'Minispiral'

- Keplerian velocity profile
- Observed radial velocities (hydrogen recombination lines):

Figure : H30 α observations by ALMA

Figure : H39 α observations by ALMA.

Interaction with the 'Minispiral'

- interaction regime consists of *gravitational* and *electromagnetic* interaction
- <u>Gravitational interaction</u>: accretion rate M
- Electromagnetic interaction: dipole moment μ , rotational period P
- another important parameter is the relative speed of the star with respect to the surrounding medium v_{*}
- interplay of magnetic *P*_m and accretion pressure *P*_a, see Figure:

Interaction with the 'Minispiral'

• the condition $P_{\rm m} = P_{\rm a}$ yields the stopping radius:

$$R_{\rm st} = \begin{cases} R_{\rm A} & \text{if } R_{\rm st} \le R_{\rm I}, a \\ R_{\rm Sh} & \text{if } R_{\rm st} > R_{\rm I}. \end{cases}$$
(1)
$$R_{\rm A} = \begin{cases} \left(\frac{4\mu^2 G^2 M_{\rm NS}^2}{\dot{M}_c v_\star^5}\right)^{1/6} & \text{if } R_{\rm A} > R_{\rm G}, \\ \left(\frac{\mu^2}{\dot{M}_c (2GM_{\rm NS})^{1/2}}\right)^{2/7} & \text{if } R_{\rm A} \le R_{\rm G}. \end{cases}$$
(2)
$$R_{\rm Sh} = \left(\frac{2L_{\rm ej}}{\dot{M}_c v_\star v_{\rm ej}}\right)^{1/2} R_{\rm G},$$
(2)
$$R_{\rm Sh} = \left(\frac{8\kappa_{\rm t}\mu^2 (GM_{\rm NS})^2 \Omega^4}{\dot{M}_c v_\star^5 c^4}\right)^{1/2} \text{if } v_{\rm ej} = c.$$
(3)

• Other important distance scales: $R_{\rm l} = c/\Omega$; $R_{\rm c} = (GM_{\rm NS}/\Omega^2)^{1/3}$; $R_{\rm G} = 2GM_{\rm NS}/(v_{\star}^2 + c_{\rm s}^2)$

Interaction with the 'Minispiral'

- classification according to Lipunov (1992)
- interaction modes determined by the relation among four distance scales: R₁, R_c, R_G, and R_{st}

 $\label{eq:result} \begin{array}{l} \mbox{Figure}:\\ \mbox{$R_{\rm st}>max\{R_{\rm G},R_{\rm l}\}$}\\ \mbox{radiopulsars} \end{array}$

 $\begin{array}{l} \mbox{Figure}: R_c < R_{st} \leq \\ max\{R_G,R_l\} \\ \mbox{spinning-down more} \\ \mbox{efficient, transient} \\ \mbox{sources} \end{array}$

Figure : $R_{\rm st} \leq R_{\rm G}$ and $R_{\rm st} \leq R_{\rm c}$ X-ray pulsars, bursters

Interaction with the 'Minispiral' - effect of the density of the ambient medium

Neutron stars – interaction modes Interaction with the 'Minispiral' – effect of different distribution

Magnetic field-period plane: effect of distribution

Neutron stars – interaction modes Interaction with the 'Minispiral' – effect of different distribution

Distribution of interaction modes – effect of <u>distribution</u>: (1) Gaussian, (2) broader Gaussian, (3) Uniform, (4) Gaussian+uniform

Neutron stars – interaction modes Interaction with the 'Minispiral' – effect of the distance from the SMBH

- distribution (4): Gaussian+Uniform
- uniform distribution in cos i and log a
- ejectors ↓, propeller+accretor ↑ with increasing distance from the SMBH

Interaction with the 'Minispiral'

- effect of temperature small ($\uparrow T \leftrightarrow \downarrow$ propellers)
- evolution of neutron stars: prolongation of period, constant magnetic field $t < t_d \approx 10^6 \, \mathrm{yr}$

$$\begin{split} \dot{\Omega} &= -\beta \Omega^3 - \gamma \Omega^5 \,, \\ \beta &= \frac{2}{3c^3} \frac{\mu^2}{I} \sin^2 \alpha \,, \\ \gamma &= \frac{32}{5} \frac{G}{c^5} I \epsilon^2 \,. \end{split}$$

- $\bullet\,$ does not change the initial distribution on the time-scale of $10^4\,\mathrm{yr}$
- interaction mode changes temporarily due to density fluctuations

Interaction with the 'Minispiral'

- Exemplary evolution of period (↑) and period derivative (↓) during 10⁵ yr for a single neutron star
- Interaction mode changes (E ↔ P) due to density fluctuations

Neutron stars – observable effects Isolated accreting sources

 relative velocities (left) and bolometric accretion luminosities (right):

- Could be detected as faint X-ray sources?
- low flux and scattering by dust; halo $\approx 1.0(aE)^{-1}$ arcmin
- scattering cross section:

$$\sigma = 6.3 \times 10^{-7} (2Z/N)^2 (\rho/3)^2 a^4 E^{-2} \,\mathrm{cm}^2$$

could contribute to diffuse X-ray emission

Neutron stars – observable effects

Bow-shock structures and Pulsar Wind Nebulae

• characteristic PWN and bow-shock sizes: $r_{\rm bs} \approx [\dot{E}/(4\pi c \rho_a v_+^2)]^{1/2}$

$$\dot{E}(P,\dot{P}) = 4\pi^2 I \frac{\dot{P}}{P^3}$$

- ejectors form naturally bigger bow-shock structures in the inter-arm region
- propeller bow shocks much smaller

Figure : Distribution of bow-shock sizes in the Minispiral arms Figure : Distribution of bow-shock sizes in the interarm region

Neutron stars – observable effects

Bow-shock structures and Pulsar Wind Nebulae

Figure : Comparison of bow-shock Figure : All bow shocks (the Armssizes of neutron stars passing+ the inter-arm region) in thethrough the arms in the simulated simulated $20'' \times 20''$ image of theMinispiral region. Ejector bow $20'' \times 20''$ image of the MinispiralMinispiral region. Ejector bow(bow-shocks are artificiallyshocks are red, propeller ones areenlarged.)green.

Neutron stars – observable effects

Bow-shock structures and Pulsar Wind Nebulae

2004)

- the distribution of interaction modes (E,P,A) is strongly dependent on the density
- the distribution is weakly dependent on the temperature
- temporal evolution does not change the initial distribution on the timescale of 10⁴ yr
- a single neutron star changes interaction mode due to density fluctuations
- Minispiral densities (~ 10⁴ ÷ 10⁵ cm⁻³): E > P ≥ A depending on the distribution of P and μ
- bow-shock structures and PWN as means of neutron star detection

Do, T., Martinez, G. D., Yelda, S., et al. 2013, ApJL, 779, L6

- Eckart, A., Schödel, R., & Straubmeier, C. 2005, The Black Hole at the Center of the Milky Way (London: Imperial College Press)
- Genzel, R., Eisenhauer, F., & Gillessen, S. 2010, Reviews of Modern Physics, 82, 3121
- Genzel, R. & Karas, V. 2007, in IAU Symposium, Vol. 238, IAU Symposium, ed. V. Karas & G. Matt, 173–180
- Kunneriath, D., Eckart, A., Vogel, S. N., et al. 2012, A&A, 538, A127
- Lauer, T. R., Ajhar, E. A., Byun, Y.-I., et al. 1995, AJ, 110, 2622
- Lipunov, V. M. 1992, Astrophysics of Neutron Stars (Berlin/Heidelberg: Springer-Verlag)
- Manchester, R. N., Hobbs, G. B., Teoh, A., & Hobbs, M. 2005, The Australia Telescope National Facility Pulsar Catalogue, http://www.atnf.csiro.au/research/pulsar/psrcat/
- Morris, M. 1993, ApJ, 408, 496
- Salpeter, E. E. 1955, ApJ, 121, 161
- Zajaček, M., Karas, V., & Eckart, A. 2014, ArXiv 1403.5792
- Zhao, J.-H., Blundell, R., Moran, J. M., et al. 2010, ApJ, 723, 1097
- Zhao, J.-H., Morris, M. R., Goss, W. M., & An, T. 2009, ApJ, 699, 186

Interaction with the gaseous medium near Sgr A* Encounters with a single cloud

Three plausible scenarios: <u>core-less cloud</u>, <u>dust-enshrouded star</u>, <u>binary with a common envelope</u> (Zajaček et al. 2014)

Interaction with the gaseous medium near Sgr A* Encounters with a single cloud

- High relative velocities at the pericentre \rightarrow low accretion luminosity
- Non-magnetized neutron stars accretors: $L_{acc} = \eta \dot{M}_{acc} c^2$;

Answers to the referee

- uniform distribution in cos i and log a
- encounter rate increased from \sim 1.2% to \sim 1.8% (clump diameter \approx 1″)
- no qualitative difference in density dependence

Distribution: Uniform

• Distribution: Gaussian+Uniform

distribution dependence: ratio differs

Basic characteristics of neutron stars

Periods and magnetic fields of observed pulsars

Figure : Period distribution (left) and magnetic dipole distribution (right). The data are taken from ATNF Pulsar Catalogue (Manchester et al. 2005).

Interaction with the gaseous medium near Sgr A* Encounters with a single cloud

- Is the distribution <u>uniform</u> in the central parsec or <u>radial</u>, e.g. $\propto r^{-3/2}$?
- Exemplary case: $N_{\rm NS} = 10^5$, radial distribution:

Interaction with the gaseous medium near Sgr A* Encounters with a single cloud

• cumulative number of encounters: $\langle N_{\rm NS} \rangle \approx \int_{S} n_{\rm NS}(r) \sigma_{\rm cloud} v_{\rm NS}(r) dt$

 Possibility to distinguish between <u>uniform</u> and <u>radial</u> distribution by observing G2?

- interaction modes determined by the relation among four distance scales: R₁, R_c, R_G, and R_{st}
- classification according to Lipunov (1992)

Name	Notation	Relation between distances	Observational effects
Ejector	E	$R_{st} > max\{R_G, R_l\}$	radiopulsars
Propeller	Р	$R_{c} < R_{st} \le \max{\{R_{G}, R_{l}\}}$	-
Accretor	А	$R_{ m st} \leq R_{ m G}$ and $R_{ m st} \leq R_{ m c}$	X-ray pulsars, X-ray bursters
Georotator	G	$R_{ m G} < R_{ m st} \leq R_{ m c}$	-

Table : Summary of the interaction modes and thus types of neutron stars according to Lipunov (1992).

Additional remarks Isolated accreting sources

- encounters with individual arms: Northern Arm (red), Eastern Arm (green), Western Arc (blue)
- uniform distribution in cos i

Additional remarks Isolated accreting sources

- encounters with individual arms: Northern Arm (red), Eastern Arm (green), Western Arc (blue)
- distribution of orbital elements

