Neutron stars near the Galactic centre: their interaction modes and observable effects

Michal Zajaček ${ }^{1,2}$
Vladimír Karas ${ }^{1}$, Ladislav Šubr ${ }^{2}$

${ }^{1}$ Relativistic Astrophysics Group
Astronomical Institute of the Academy of Sciences of the Czech Republic
${ }^{2}$ Astronomical Institute, Charles University in Prague

The $7^{\text {th }}$ FERO meeting, Krakow August 28, 2014

Supported by Grant Agency of the Charles University in Prague ($\sharp 879113$)

Topic

Topic: Galactic centre - low-luminosity (active) galactic nucleus

- Galactic centre - complex environment: gas, dust, stars (late- and early-type stars + compact remnants), supermassive black hole (Eckart et al. 2005; Genzel et al. 2010; Genzel \& Karas 2007)
- closest galactic nucleus to us (highest resolution obtained)
- Multiwavelength figure (Credit: NASA/ESA):

Topic

Topic: Galactic centre - low-luminosity (active) galactic nucleus

- ionized gas of the Minispiral is located in the sphere of influence of the SMBH:

$$
r_{\mathrm{SI}} \approx 1.7\left(\frac{M_{\bullet}}{4.0 \times 10^{6} M_{\odot}}\right)\left(\frac{\sigma}{100 \mathrm{~km} \mathrm{~s}^{-1}}\right)^{-2}
$$

Figure : 3-mm continuum image by CARMA (left), synthetic image with the S-cluster (right).

Topic: Galactic centre - low-luminosity (active) galactic nucleus

Figure : ALMA Band 6 (211275 GHz) image - line $\mathrm{H} 30 \alpha$ (231.9 GHz) integrated

Figure : ALMA Band 3 (84-116 GHz) image - line H39 α (106.74 GHz) integrated

Topic: Galactic centre - low-luminosity (active) galactic nucleus

Figure : S-cluster (left), 3D velocity for G2/DSO (right).

Neutron stars near the Galactic centre

Importance

(1) probes of the ISM: dispersion measure, rotation measure
(2) precise tests of GTR
(3) history of the Galactic centre: end-products of stellar evolution

Open questions:

- What is the estimated number of NS in the innermost parsec?
- How do they interact with the surrounding medium?
- What are the possibilities of their detection?

Neutron stars near the Galactic centre

Mass segregation near Sgr A*

Aims

- constraining the number of NS
- studying the interaction with the environment: distribution of interaction modes
- possibility to reveal a part of the population indirectly: bow-shock structures

Basic characteristics of neutron stars

Neutron stars as gravimagnetic rotators

- NS characterized by: $M_{\text {NS }}, \mu$, and $P=2 \pi / \Omega$

Basic characteristics of neutron stars $P-P$ diagram

Figure : $P-\dot{P}$ diagram. The data are taken from ATNF Pulsar Catalogue (Manchester et al. 2005) and SNR catalogue (University of Manitoba).

Estimates of the number of NS near Sgr A*

Figure: Spiral structure of the Galaxy and distribution of 2302 neutron stars in the $X Y$ Galactic plane. Data taken from the ATNF Pulsar Database (Manchester et al. 2005).

Estimates of the number of NS near Sgr A*

(i) estimates based on the enclosed dynamical mass and the IMF; $\alpha \in(0.4,2.3)$ (Salpeter 1955; Morris 1993):

$$
N_{\mathrm{NS}}=\frac{2-\alpha}{1-\alpha} \frac{m_{\mathrm{NS} 2}^{1-\alpha}-m_{\mathrm{NS} 1}^{1-\alpha}}{m_{\max }^{2-\alpha}-m_{\mathrm{min}}^{2-\alpha}} M_{\mathrm{TOT}} .
$$

Estimated number for different parameters: $N_{\mathrm{NS}}=11000 \pm 5000$
(ii) Considering density distribution (Lauer et al. 1995; Do et al. 2013):

$$
\begin{aligned}
& \rho(r)=\rho_{0}\left(\frac{r}{r_{\mathrm{b}}}\right)^{-\gamma}\left[1+\left(\frac{r}{r_{\mathrm{b}}}\right)^{\delta}\right]^{\left(\gamma-\gamma_{0}\right) / \delta} \\
& N_{\mathrm{CR}}=4 \pi \int_{R_{\mathrm{dis}}}^{R_{\mathrm{gc}}} n_{\mathrm{CR}}(r) r^{2} \mathrm{~d} r .
\end{aligned}
$$

- the order of $10^{4}-10^{5} \longleftrightarrow$ observed just one magnetar !?
- The HII region of Sgr A West ('Minispiral') is a promising target to search for the effects of interaction with propagating compact objects
- interactions with the three arms of the 'Minispiral': Keplerian model according to Zhao et al. $(2009,2010)$
- ~ $1 \%-10 \%$ of neutron stars should interact
- typical relative velocities: $\sim 100-500 \mathrm{~km} \mathrm{~s}^{-1}$

Figure : 'Minispiral’ components (left) and model radial velocities $(\mathrm{km} / \mathrm{s})$.
- Keplerian velocity profile
- Observed radial velocities (hydrogen recombination lines):

Figure: $\mathrm{H} 30 \alpha$ observations by ALMA

Figure : H39 α observations by ALMA.

Neutron stars - interaction modes

- interaction regime consists of gravitational and electromagnetic interaction
- Gravitational interaction: accretion rate \dot{M}
- Electromagnetic interaction: dipole moment $\boldsymbol{\mu}$, rotational period P
- another important parameter is the relative speed of the star with respect to the surrounding medium v_{\star}
- interplay of magnetic P_{m} and accretion pressure P_{a}, see Figure:

- the condition $P_{\mathrm{m}}=P_{\mathrm{a}}$ yields the stopping radius:

$$
\begin{align*}
R_{\mathrm{st}} & = \begin{cases}R_{\mathrm{A}} & \text { if } R_{\mathrm{st}} \leq R_{\mathrm{l}}, a \\
R_{\mathrm{Sh}} & \text { if } R_{\mathrm{st}}>R_{\mathrm{l}} .\end{cases} \tag{1}\\
R_{\mathrm{A}} & = \begin{cases}\left(\frac{4 \mu^{2} G^{2} M_{\mathrm{NS}}^{2}}{\dot{M}_{\mathrm{c}}^{5} v^{5}}\right)^{1 / 6} & \text { if } R_{\mathrm{A}}>R_{\mathrm{G}}, \\
\left(\frac{\mu^{2}}{\bar{M}_{\mathrm{c}}\left(2 G M_{\mathrm{Ss}}\right)^{1 / 2}}\right)^{2 / 7} & \text { if } R_{\mathrm{A}} \leq R_{\mathrm{G}} .\end{cases} \tag{2}\\
R_{\mathrm{Sh}} & =\left(\frac{2 L_{\mathrm{ej}}}{\dot{M}_{\mathrm{c}} v_{\star} V_{\mathrm{ej}}}\right)^{1 / 2} R_{\mathrm{G}}, \\
R_{\mathrm{Sh}} & =\left(\frac{8 \kappa_{\mathrm{t}} \mu^{2}\left(G M_{\mathrm{NS}}\right)^{2} \Omega^{4}}{\dot{M}_{\mathrm{c}} v_{\star}^{5} c^{4}}\right)^{1 / 2} \text { if } \quad v_{\mathrm{ej}}=c . \tag{3}
\end{align*}
$$

- Other important distance scales: $R_{1}=c / \Omega$;

$$
R_{\mathrm{C}}=\left(G M_{\mathrm{NS}} / \Omega^{2}\right)^{1 / 3} ; R_{\mathrm{G}}=2 G M_{\mathrm{NS}} /\left(v_{\star}^{2}+c_{\mathrm{s}}^{2}\right)
$$

Neutron stars - interaction modes

- classification according to Lipunov (1992)
- interaction modes determined by the relation among four distance scales: $R_{\mathrm{l}}, R_{\mathrm{c}}, R_{\mathrm{G}}$, and R_{st}

Figure :
$R_{\text {st }}>\max \left\{\mathrm{R}_{\mathrm{G}}, \mathrm{R}_{\mathrm{l}}\right\}$ radiopulsars

Figure :

Figure : $R_{\mathrm{c}}<R_{\mathrm{st}} \leq$ $\max \left\{\mathrm{R}_{\mathrm{G}}, \mathrm{R}_{\mathrm{l}}\right\}$ spinning-down more efficient, transient sources
$R_{\mathrm{st}} \leq R_{\mathrm{G}}$ and $R_{\mathrm{st}} \leq R_{\mathrm{c}}$ X-ray pulsars, bursters

Neutron stars - interaction modes
Interaction with the 'Minispiral' - effect of the density of the ambient medium

Neutron stars - interaction modes

Interaction with the 'Minispiral' - effect of different distribution
Magnetic field-period plane: effect of distribution

Distribution of interaction modes - effect of distribution:
(1) Gaussian, (2) broader Gaussian, (3) Uniform,
(4) Gaussian+uniform

Neutron stars - interaction modes

Interaction with the 'Minispiral' - effect of the distance from the SMBH

- distribution (4): Gaussian+Uniform
- uniform distribution in cos i and $\log a$
- ejectors \downarrow, propeller+accretor \uparrow with increasing distance from the SMBH

- effect of temperature small ($\uparrow T \leftrightarrow \downarrow$ propellers)
- evolution of neutron stars: prolongation of period, constant magnetic field $t<t_{\mathrm{d}} \approx 10^{6} \mathrm{yr}$

$$
\begin{aligned}
\dot{\Omega} & =-\beta \Omega^{3}-\gamma \Omega^{5} \\
\beta & =\frac{2}{3 c^{3}} \frac{\mu^{2}}{l} \sin ^{2} \alpha, \\
\gamma & =\frac{32}{5} \frac{G}{c^{5}} l \epsilon^{2} .
\end{aligned}
$$

- does not change the initial distribution on the time-scale of $10^{4} \mathrm{yr}$
- interaction mode changes temporarily due to density fluctuations

Neutron stars - interaction modes

- Exemplary evolution of period (\uparrow) and period derivative (\downarrow) during $10^{5} \mathrm{yr}$ for a single neutron star
- Interaction mode changes $(\mathrm{E} \leftrightarrow P)$ due to density fluctuations

21

Neutron stars - observable effects

- relative velocities (left) and bolometric accretion luminosities (right):

- Could be detected as faint X-ray sources?
- low flux and scattering by dust; halo $\approx 1.0(a E)^{-1}$ arcmin
- scattering cross section:

$$
\sigma=6.3 \times 10^{-7}(2 Z / N)^{2}(\rho / 3)^{2} a^{4} E^{-2} \mathrm{~cm}^{2}
$$

- could contribute to diffuse X-ray emission
- characteristic PWN and bow-shock sizes:

$$
\begin{aligned}
& r_{\text {bs }} \approx\left[\dot{E} /\left(4 \pi C \rho_{\mathrm{a}}^{2} v_{*}^{2}\right)\right]^{1 / 2} \\
& \dot{E}(P, \dot{P})=4 \pi^{2} \left\lvert\, \frac{\rho}{\rho^{3}}\right.
\end{aligned}
$$

- ejectors form naturally bigger bow-shock structures in the inter-arm region
- propeller bow shocks much smaller

Figure : Distribution of bow-shock sizes in the Minispiral arms

Figure : Distribution of bow-shock sizes in the interarm region

Figure : Comparison of bow-shockFigure : All bow shocks (the Arms sizes of neutron stars passing + the inter-arm region) in the through the arms in the simulated simulated $20^{\prime \prime} \times 20^{\prime \prime}$ image of the $20^{\prime \prime} \times 20^{\prime \prime}$ image of the Minispiral Minispiral region. Ejector bow (bow-shocks are artificially enlarged.) shocks are red, propeller ones are green.

Neutron stars - observable effects

- the distribution of interaction modes ($\mathrm{E}, \mathrm{P}, \mathrm{A}$) is strongly dependent on the density
- the distribution is weakly dependent on the temperature
- temporal evolution does not change the initial distribution on the timescale of $10^{4} \mathrm{yr}$
- a single neutron star changes interaction mode due to density fluctuations
- Minispiral densities ($\sim 10^{4} \div 10^{5} \mathrm{~cm}^{-3}$): $E>P \gtrsim A$ depending on the distribution of P and μ
- bow-shock structures and PWN as means of neutron star detection

Do, T., Martinez, G. D., Yelda, S., et al. 2013, ApJL, 779, L6
Eckart, A., Schödel, R., \& Straubmeier, C. 2005, The Black Hole at the Center of the Milky Way (London: Imperial College Press)
Genzel, R., Eisenhauer, F., \& Gillessen, S. 2010, Reviews of Modern Physics, 82, 3121
Genzel, R. \& Karas, V. 2007, in IAU Symposium, Vol. 238, IAU Symposium, ed. V. Karas \& G. Matt, 173-180
Kunneriath, D., Eckart, A., Vogel, S. N., et al. 2012, A\&A, 538, A127
Lauer, T. R., Ajhar, E. A., Byun, Y.-I., et al. 1995, AJ, 110, 2622
Lipunov, V. M. 1992, Astrophysics of Neutron Stars (Berlin/Heidelberg: Springer-Verlag)
Manchester, R. N., Hobbs, G. B., Teoh, A., \& Hobbs, M. 2005, The Australia Telescope National Facility Pulsar
Catalogue, http://www.atnf.csiro.au/research/pulsar/psrcat/
Morris, M. 1993, ApJ, 408, 496
Salpeter, E. E. 1955, ApJ, 121, 161
Zajaček, M., Karas, V., \& Eckart, A. 2014, ArXiv 1403.5792
Zhao, J.-H., Blundell, R., Moran, J. M., et al. 2010, ApJ, 723, 1097
Zhao, J.-H., Morris, M. R., Goss, W. M., \& An, T. 2009, ApJ, 699, 186

Interaction with the gaseous medium near Sgr A**

Encounters with a single cloud

Three plausible scenarios: core-less cloud, dust-enshrouded star, binary with a common envelope
(Zajaček et al. 2014)

Interaction with the gaseous medium near Sgr A*

- High relative velocities at the pericentre \rightarrow low accretion luminosity
- Non-magnetized neutron stars - accretors: $L_{\mathrm{acc}}=\eta \dot{M}_{\mathrm{acc}} c^{2}$; $\dot{M}_{\text {acc }} \propto v_{\text {rel }}^{-3}$

Answers to the referee

- uniform distribution in cos i and $\log a$
- encounter rate increased from $\sim 1.2 \%$ to $\sim 1.8 \%$ (clump diameter $\approx 1^{\prime \prime}$)
- no qualitative difference in density dependence

Answers to the referee

Ratio of interaction modes

- Distribution: Gaussian

Answers to the referee

Ratio of interaction modes

- Distribution: Broader Gaussian

Answers to the referee

Ratio of interaction modes

- Distribution: Uniform

Answers to the referee

Ratio of interaction modes

- Distribution: Gaussian+Uniform

Answers to the referee

Ratio of interaction modes

- distribution dependence: ratio differs

Basic characteristics of neutron stars

Figure : Period distribution (left) and magnetic dipole distribution (right). The data are taken from ATNF Pulsar Catalogue (Manchester et al. 2005).

Interaction with the gaseous medium near Sgr A**

Encounters with a single cloud

- Is the distribution uniform in the central parsec or radial, e.g. $\propto r^{-3 / 2}$?
- Exemplary case: $N_{\mathrm{NS}}=10^{5}$, radial distribution:

Interaction with the gaseous medium near Sgr A*

Encounters with a single cloud

- cumulative number of encounters:

$$
\left\langle N_{\mathrm{NS}}\right\rangle \approx \int_{S} n_{\mathrm{NS}}(r) \sigma_{\mathrm{cloud}} v_{N S}(r) \mathrm{d} t
$$

- Possibility to distinguish between uniform and radial distribution by observing G2?
- interaction modes determined by the relation among four distance scales: $R_{\mathrm{l}}, R_{\mathrm{c}}, R_{\mathrm{G}}$, and R_{st}
- classification according to Lipunov (1992)

Name	Notation	Relation between distances	Observational effects
Ejector	E	$R_{\text {st }}>\max \left\{\mathrm{R}_{\mathrm{G}}, \mathrm{R}_{1}\right\}$	radiopulsars
Propeller	P	$R_{\mathrm{c}}<R_{\text {st }} \leq \max \left\{\mathrm{R}_{\mathrm{G}}, R_{1}\right\}$	-
Accretor	A	$R_{\mathrm{st}} \leq R_{\mathrm{G}}$ and $R_{\mathrm{st}} \leq R_{\mathrm{c}}$	X-ray pulsars, X-ray bursters
Georotator	G	$R_{\mathrm{G}}<R_{\mathrm{st}} \leq R_{\mathrm{c}}$	-

Table : Summary of the interaction modes and thus types of neutron stars according to Lipunov (1992).

Additional remarks

Isolated accreting sources

- encounters with individual arms: Northern Arm (red), Eastern Arm (green), Western Arc (blue)
- uniform distribution in cos i

Additional remarks

Isolated accreting sources

- encounters with individual arms: Northern Arm (red), Eastern Arm (green), Western Arc (blue)
- distribution of orbital elements

