Misaligned Accretion: ADAFs, Slim Discs, QPOs and Jets

Andrew King

University of Leicester, UK Anton Pannekoek Institute, Amsterdam, NL Leiden Observatory, NL

Warsaw 2018

misalignment is generic for all accretion

obvious for AGN accretion - accretion plane set at large distance from SMBH

no good reason for alignment in high-mass X-ray binaries

even in low-mass X-ray binaries, accretion can only dilute misalignment after SN, but supplies too little angular momentum to remove it

assuming alignment is a singular limit removing many effects

how does misaligned accretion proceed?

standard assumption: disc warps (Bardeen-Petterson)

Lodato & Price, 2010

OK if inclination is moderate

how does misaligned accretion proceed?

but if inclination is large, or viscosity weaker, disc breaks!

predicted by Papaloizou & Pringle, 1983; Ogilvie, 1999, 2000 also recently found using GRMHD (Liska+, 2018) broken parts of discs precess separately and interact

if they have precessed more than 180 degrees they are partially opposed

=> INFALL

broken parts of discs precess separately and interact precession by more than 180 degrees => partially opposed => infall could this make an ADAF?

misaligned accretion - BH spin inclined to external magnetic field (King & Lasota 1977)

Fig. 1. Black hole of angular momentum J immersed in a magnetic field B which becomes uniform far from the hole. The y and y' axes are identical and point into the paper, and e is a radially pointing unit vector. Part of the disc considered in III of the text is shown in section (not to scale)

=> spinning black hole + misaligned magnetic must feel a torque trying to align them

=> spinning black hole + misaligned magnetic must feel a torque trying to align them

King & Lasota 1977: fixed field, what is torque on the hole?

=> spinning black hole + misaligned magnetic must feel a torque trying to align them

King & Lasota 1977: fixed field, what is torque on the hole?

massive GR (Newman-Penrose) calculation =>

$$\mathbf{T} = \frac{2G^2}{3c^5} M(\mathbf{J} \times \mathbf{B}) \times \mathbf{B}$$

=> spinning black hole + misaligned magnetic must feel a torque trying to align them King & Lasota 1977: fixed field, what is torque on the hole?

massive GR (Newman-Penrose) calculation =>

$$\mathbf{T} = \frac{2G^2}{3c^5} M(\mathbf{J} \times \mathbf{B}) \times \mathbf{B}$$

aligns by killing off the misaligned component of \mathbf{J} while aligned component stays fixed:

$$J_{||} = \text{constant}, \quad J_{\perp} = J_{\perp 0} e^{-t/t_h}, \text{with}$$

 $t_h = \frac{3c^5}{2G^2 M B^2}$

=> spinning black hole + misaligned magnetic must feel a torque trying to align them King & Lasota 1977: fixed field, what is torque on the hole?

massive GR (Newman-Penrose) calculation =>

$$\mathbf{T} = \frac{2G^2}{3c^5} M(\mathbf{J} \times \mathbf{B}) \times \mathbf{B}$$

aligns by killing off the misaligned component of \mathbf{J} while aligned component stays fixed:

$$J_{||} = \text{constant}, \quad J_{\perp} = J_{\perp 0} e^{-t/t_h}, \text{with}$$

 $t_h = \frac{3c^5}{2G^2MB^2}$

alignment utterly negligible except for very strong fields (GRBs?)

=> gravitational and EM radiation

if we set
$$\boldsymbol{\mu} = R_g^3 \boldsymbol{B}, \, \boldsymbol{\omega} = \boldsymbol{J}/MR_g^2$$

then
$$\mathbf{T} = \frac{2G^2}{3c^5} M(\mathbf{J} \times \mathbf{B}) \times \mathbf{B}$$

=> gravitational and EM radiation

if we set
$$\boldsymbol{\mu}=R_g^3 \boldsymbol{B},~ \boldsymbol{\omega}=\boldsymbol{J}/MR_g^2$$

then
$$\mathbf{T} = \frac{2G^2}{3c^5} M(\mathbf{J} \times \mathbf{B}) \times \mathbf{B}$$

becomes

$$m{T} = rac{2\omega^2}{3c^3} (m{\omega} imes m{\mu}) imes m{\mu}$$

=> gravitational and EM radiation

if we set
$$\boldsymbol{\mu} = R_g^3 \boldsymbol{B}, \, \boldsymbol{\omega} = \boldsymbol{J}/MR_g^2$$

then
$$\mathbf{T} = \frac{2G^2}{3c^5} M(\mathbf{J} \times \mathbf{B}) \times \mathbf{B}$$

becomes

$$\boldsymbol{T} = \frac{2\omega^2}{3c^3} (\boldsymbol{\omega} \times \boldsymbol{\mu}) \times \boldsymbol{\mu}$$

magnetic dipole radiation

=> gravitational and EM radiation

if we set
$$\boldsymbol{\mu} = R_g^3 \boldsymbol{B}, \ \boldsymbol{\omega} = \boldsymbol{J}/MR_g^2$$

then
$$\mathbf{T} = \frac{2G^2}{3c^5} M(\mathbf{J} \times \mathbf{B}) \times \mathbf{B}$$

becomes

$$\boldsymbol{T} = \frac{2\omega^2}{3c^3} (\boldsymbol{\omega} \times \boldsymbol{\mu}) \times \boldsymbol{\mu}$$

magnetic dipole radiation

circular polarization carries off spin angular momentum

magnetic field induces a dipole near BH horizon this is forced to corotate inside the ergosphere

=> dipole radiation

more interesting case - MRI field anchored in accretion disc rings: spin now fixed and they move: misalignment => Lense-Thirring precession

=> dipole emission if accretion disc has poloidal field (MRI!)

more interesting case - MRI field anchored in accretion disc rings: spin now fixed and they move: misalignment => Lense-Thirring precession

=> dipole emission if accretion disc has poloidal field (MRI!)

similar to radio pulsars, but one big difference:

similar to radio pulsars, but one big difference:

precession can do no work: dipole emission here extracts gravitational energy, **not** spin

spin is necessary to cause precession, but does not drive emission

similar to radio pulsars, but one big difference:

precession can do no work: dipole emission here extracts gravitational energy, **not** spin

spin is necessary to cause precession, but does not drive emission

further:

this effect works *whatever* the nature of the accretor - if this is not a black hole, precession is driven by stellar quadrupole moment dipole emission goes as $\mu^2 \omega^4 \propto B^2 r^{-6}$ so dipole emission sharply peaked towards disc inner edge (ISCO for BH)

$$L_{\rm dip} = \frac{128}{9\alpha} \left(\frac{R}{H}\right) \left(\frac{v_A}{c_s}\right)^2 \frac{\dot{M}c^2}{r^{17/2}} \left(1 - \frac{1}{r^{1/2}}\right)^{11/20} a^4 \sin^2\beta$$

$$\frac{L_{\rm dip}}{L_{\rm acc}} = \frac{128}{9\eta\alpha} \left(\frac{R}{H}\right) \left(\frac{v_A}{c_s}\right)^2 \frac{a^4 \sin^2\beta}{r^{15/2}} \left(1 - \frac{1}{r^{1/2}}\right)^{11/20}$$

 $r = R/R_g$

competition between alignment and accretion

emission is coherent at $\omega < 2c/R_g \sim 4 \times 10^4 \text{ Hz}$ for $10M_{\odot}$ black hole so below plasma frequency, not directly observable accretion/alignment competition => QPOs at $\sim \omega$ (kHz) as in radio pulsars, emission must drive outflow as jets along spin axis

Summary

misaligned accretion + MRI =>

QPOs, and JETS along spin axis, for all accretors

MHD, GRMHD (even `radiation' GRRMHD)

do not capture this, as displacement current set to zero:

no matter - radiation coupling