Thermal-viscous instabilities in large accretion discs

Jean-Marie Hameury, Deepika Bollimpali, Jean-Pierre Lasota

DIM basic hypotheses

- Alpha viscosity most often assumed
- Thin disk approximation:
 - Keplerian motion
 - Radial gradients small as compared to vertical gradients (but transition fronts, inner edge)
 - Vertical structure decouples from radial structure
- Vertical structure
 - Hydrostatic and thermal equilibrium assumed, with an effective alpha different from the actual one
 - Time-dependent terms in the vertical thermal equation are proportional to heat dissipation in steady state, i.e. to P

=> effective α , different from actual α

- $T_{eff} = T_{eff}(\Sigma, T_c, r)$ $v = v(\Sigma, T_c, r)$
- If thermal equilibrium, $T_c = T_c(\alpha, \Sigma, r) \Longrightarrow S$ curves
- α different on the hot and cold branches: $\alpha = \alpha(T_c, ...)$

Additional ingredients

- Tidal torques:
 - Angular momentum conservation equation
 - Heating term
 - $T_{tid} \sim (r/a)^5$ or $exp((r-r_{tid})/\delta r)$
- Hot spot
- Inner disc truncation by e.g. magnetic field
- Irradiation by the primary (hot white dwarf) or self irradiation ($F_{irr} = C \frac{GM_1\dot{M}}{r}r^{-2}$, with C ~ $10^{-2} 10^{-3}$, Dubus et al. 1999)
- Mass transfer fluctuations
- Chemical composition (He secondaries)

Reproduces reasonably well DN and SXT outbursts

Large discs

- Found in long period systems with evolved secondaries
 - Symbiotic stars
 - SXTs such as V 404 Cyg ($P_{orb} = 6.5 d$)
- No observational constraint on the effect of irradiation, in contrast with systems with short P_{orb}
- The outer disc radius is not well determined if the companion does not fill its Roche lobe (wind fed accretion)
- The disc cannot be stable unless $\dot{M} >$ 1.25 $10^{-7} M_2^{0.89} P_d^{1.79} M_{\odot}$ yr⁻¹ (unirradiated case)
- Large outbursts are possible in principle

$$\dot{M}_{max} = 3.6 \ 10^{-7} \ P_d^{1.79} M_{\odot} \ yr^{-1}$$

- But in these systems the heating front might not reach the outer disc edge
- Numerical simulations needed

- Recurrent nova, τ_{rec} = 20 yr, P_{orb} = 454d, d = 2.3 kpc
- $M_1 = 1.35 \,\mathrm{M}_{\odot};$
- $\dot{M} = 10^{-8} 10^{-6} M_{\odot} \text{yr}^{-1}$; but values as low as $10^{-12} 10^{-11} M_{\odot} \text{yr}^{-1}$ deduced from X-rays in quiescence
- Suggestion (Alexander et al. 2011) that outbursts might be DN outbursts

<i>M</i> (M _☉ yr ⁻¹)	Δm_v	∆ <i>M</i> (M _☉)	t _{rec} (yr)	М _{реак}	М _{quiesc}
10 ⁻⁶	2	10 ⁻⁶	1.5	4.1 10-6	3.8 10-12
10 ⁻⁷	0.5	7 10 ⁻⁸	0.9	6.3 10 ⁻⁷	3.8 10-12
10 ⁻⁸	0.1	4.5 10 ⁻⁹	0.5	9.3 10 ⁻⁸	3.8 10 ⁻¹²

• High $\dot{M}: \Delta M > \Delta M_{ign} \sim 4 \ 10^{-7} M_{\odot}$ for triggering a nova outburst;

 \dot{M}_{peak} larger than both the limit for stable burning $(\dot{M}_{stable} \sim 6 \ 10^{-8} \ M_{\odot} \ yr^{-1})$ and the limit (3 $\dot{M}_{stable})$ for burning hydrogen as quickly as it is accreted Recurrence time far too short

• Low \dot{M} : ΔM small; hydrogen accumulates until a nova eruption is triggered;

 ΔM_{ign} reached after 5 – 50 DN outbursts. DN outbursts undetectable in optical but could be observed in X-rays

Model with self-irradiation

<i>М</i> (М _⊙ yr ⁻¹)	Δm_v	∆ <i>M</i> (M _☉)	t _{rec} (yr)	М _{реак}	М _{quiesc}
10-6	2	5 10 ⁻⁶	3.7	4.1 10-6	3.8 10 ⁻¹²
10 ⁻⁷	0.9	4 10-7	4.2	6.3 10-7	3.8 10 ⁻¹²
10 ⁻⁸	0.2	1.5 – 4 10-8	2.6 - 3.7	9.3 10 ⁻⁸	3.8 10 ⁻¹²

• Same conclusions as in the unirradiated case; longer recurrence time and larger ΔM , thus smaller number of DN outbursts between nova eruptions

Conclusions for RS Oph

- The mass transfer rate in RS Oph is $10^{-8}~-~10^{-7}~M_{\odot}~\text{yr}^{-1}$
- The disc is unstable and DN outbursts occur every few years.
 - They are undectable in optical, but could be detected in X-rays
 - Account for the low quiescent rate
- RS Oph outbursts are thermonuclear outbursts that occur during the decline of a DN outburst

•
$$P_{orb} = 759 \text{ d}, \text{ d} = 2.0 \text{ kpc}$$

- $M_1 = 0.65 \text{ M}_{\odot}$; $M_2/M_1 \sim 2$. The secondary does not fill its Roche lobe
- $B_{wd} \sim 10^4 10^6$ G (optical pulsations)
- Large WD constant luminosity $L_2 \sim 10^3 L_{\odot}$
- Suggestion (Sokoloski et al. 2006) that 1st outburst is a DN outburst and the 2nd a combination outburst

Results

- DN outbursts are significant for high \dot{M} (~ $10^{-6}~{\rm M}_{\odot}~{\rm yr}^{-1}$) only;
- Their properties in optical depend only weakly on the assumptions made on irradiation
 - No irradiation
 - Irradiation of the inner parts of the disc only
 - Full disc irradiation
- Enhanced thermonuclear burning at the WD surface will occur for these high \Vec{M}
- But such large values of \dot{M} are two orders of magnitude larger than what is expected for the secular mean
- Mass transfer fluctuations in a system in which mass transfer is due to the secondary wind are much more natural

Outburst duration: about 200 d

A better (?) behaved SXT: GS 1354-64 P_{orb} = 2.54d

The heating front never reaches the outer disc edge

Same parameters as before, except $\dot{M} = 10^{17} \text{ gs}^{-1}$

- The cooling front is stuck at a radius of about 1.5 10¹¹ cm
- This is the reason for the plateau at 10¹⁷ g s⁻¹.

(preliminary) conclusions

- Light curves with long plateau can be obtained; these are similar to Z Cam systems, but the mechanism is very different
 - See e.g. Swift J1753.5-0127 (Shaw et al. 2018), but this source has a short orbital period; as the period is photometric only, is it the true orbital period (actually, it is interpreted as the superhump period)?
- Eddington luminosities not simple to obtain; reduce α on the cold branch (or increase it on the hot branch)?
- Mass loss to be included