Decoding the FeII emission in the context of Quasar Main Sequence

Swayamtrupta Panda

Center for Theoretical Physics / Nicolaus Copernicus Astronomical Center, Warsaw

Supervisor. Prof. Bożena Czerny

What motivates us?

In search for an equally robust scheme for studying the sequencing in quasars:

"An extension of the H-R diagram?"

How to make a Quasar Main Sequence ?

EV1: Anticorrelation between FeII-[OIII] (r = -0.670) Principal Component Analysis with 13 observables from quasar spectra

FIG. 2.—Ratio of peak height of [O III] λ 5007 to that of H β plotted against equivalent width of the Fe II emission between λ 4434 and λ 4684. Solid squares are radio-quiet objects, open circles are steep-spectrum radio sources, and open triangles are flat-spectrum radio sources.

D The other Eigenvectors

- \Box EV2: Luminosity Dependence of HeII λ 4686
- **Ξ** EV3: EW Hβ
- **Ξ** EV4: Hβ shape
- **Ξ** EV5: Hβ shift

The Quasar Main Sequence diagram

- 1. "Our results show that most of the diversity of quasar phenomenology can be unified with two simple quantities, Eddington ratio and orientation".
- 2. "the range of FWHMH β at fixed R_{FeII} includes a substantial component due to orientation effects such that more edge-on systems have on average larger FWHMH β , indicating a flattened BLR geometry".
- 3. "Higher-Eddington ratio quasars (with higher RFeII) may drive stronger outflows in both the broad-line region and the narrow-line region".

Distribution of quasars in the EV1 plane. The horizontal axis is the relative Fell strength, R_{Fell} , and the vertical axis is the broad H β FWHM. The red contours show the distribution of their SDSS quasar sample, and the points show individual objects. They color-code the points by the [OIII] λ 5007 strength, averaged over all nearby objects in a smoothing box of ΔR_{Fell} = 0.2 and $\Delta FWHMH\beta$ = 1000 km s-1. The EV1 sequence is the systematic trend of decreasing [OIII] strength with increasing R_{Fell} . The gray grid divides this plane into bins of FWHM_{H β} and R_{Fell} , in which they study the stacked spectral properties

The Standard Accretion Disk

Hot Comptonization

From Theoretical Standpoint...

- SED modelled with 2 power laws
- Peak of the Big Blue Bump in a multicolor accretion disk
- Constant Density single cloud model
- Photoionization modelling (CLOUDY)

Panda et al. 2018b, ApJ 866 115

From Theoretical Standpoint...

The relative normalization of the X-ray component with respect to UV is found from the universal scaling law recently discovered by Lusso & Risaliti (2017):

 $\log L_x = 0.610 \log L_{UV} + 0.538 \log v_{FWHM} + 3.40$

Distance to the Broad-line region (Bentz et al. 2013):

log R_{BLR} = 1.555 + 0.542 log L_{44,5100} [light days]

Panda et al. 2018b, ApJ 866 115

λ_{Edd} - M_{BH} limits from observations

- Sample selection matters
- Biased towards higher L_{bol}/L_{Edd} and higher M_{BH}
- Need for more observations

STEP 1

STEP 2

STEP 3

NO single simple driver of the quasar main sequence

TO HERE

The need to push further... Where is that extra FeII hidden?

Hunting down its origin(s)

Testing with a Warm Corona Model

- The additional power law (in the **XUV** and soft X-rays) in theory, should enhance the net optical FeII production.
- Shift due to color-temperature correction
- $FeII_{WC} > FeII_{initial}$
- But, FeII_{WC} < FeII_{current}

(integrated from 4434-4684 Å)

(IN)dependency of Eddington Ratio on FeII strength

Recent Observations

Photoionisation Simulations

Revisiting the past: the AGN-AGB connection and its role in FeII enhancement

- Dust formation window: Effective dust condensation occurs with a chemically enriched medium that has a sufficiently low temperature, and a large enough density
- Importance of timescale on the grain-size, net amount of dust produced and overall chemical composition

O-rich

C-rich

The Connection...that is yet to be made An idea for `FeII replenishment'

Which came first?

Quasar Main Sequence