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Abstract

This thesis is comprised of three papers concerning accretion related phenomena around neutron stars
and an introduction describing general relativistic radiation magnetohydrodynamics (GRRMHD),
numerical techniques for solving the GRRMHD equations on a computer, accretion disks, neutron

stars, and some unpublished results.

The motivation for much of the work in this thesis concerns pulsating ultraluminous X-ray sources
(PULXSs). These are extra-bright (L < 103 erg s™1) extra-galactic X-ray point sources observed outside
the centers of galaxies which also show (~ 1 s) coherent pulsations. The pulsations indicate the
presence of neutron stars so that the observed luminosities must be many times the Eddington limit
(LEdd)- Much of this thesis is dedicated to understanding the physical processes which could allow
accreting neutron stars to produce such large luminosities using numerical simulations and to a small

extend analytical calculations.

In Chapter 2, which consists of the publication Abarca and KluZniak (2016), I extended the results
in Wielgus et al. (2015) to include a first order, linear perturbation analysis to study oscillations about
the equilibrium configuration of a radiation supported atmosphere. While not directly concerned
with PULXSs, this paper serves as an illustration of the necessity of including radiation in relativistic
hydrodynamics to properly encompass the physics around accreting neutron stars and so it helps
to set the stage for the next two chapters. The main result of the publication was that the lowest
frequency eigenmode is consistent with the 300-600 Hz quasi periodic oscillations (QPOs) seen in
several X-ray bursting low-mas X-ray binaries. However, when the full effects of radiation drag were
included in the calculation, the oscillations were found to be over-damped.

The second paper, Abarca et al. (2018) included in Chapter 3, involves simulations of super-
Eddington accretion onto a black hole and a non-magnetized neutron star, the later of which obtained
a hard-surface implemented as a sticky reflective inner radial boundary condition. The simulations
showed that gas collected on the surface of the neutron star and filled the domain with so much
material that any radiation released by the accretion disk hitting the surface was trapped. The radiation
which was able to escape was found to be nearly isotropic and around one Eddington luminosity
which does not resemble a ULX in any sense. This paper made it possible to disentangle the effects of
including a magnetic field and a hard-surface into an accreting NS simulation.

The last chapter concerns a letter (Abarca et al. 2021) in which I run a 2D axisymmetric GRRMHD
simulation of super-Eddington accretion onto a neutron star with a 2 x 10'® G dipolar magnetic
field. In order to handle the large magnetizations present in the magnetosphere I implement the
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ABSTRACT

method from Parfrey and Tchekhovskoy (2017) and adapt it to work with GRRMHD simulations.
I also use a boundary condition which is meant to model gas hitting the surface, becoming shocked
and releasing a fraction (in this case 0.75) of its kinetic energy as outflowing radiation. The disk
formed in the simulation is truncated by the magnetic field and the flow is driven along field lines
forming accretion columns. A large amount of radiation is released at the base of the column and this
radiation becomes collimated by the outflowing gas so that when it reaches the observer it appears
to be originating from a source many times brighter (~ 140 Lgqq). The actual amount of released
radiation is much smaller, showing that the system is able to beam the radiation to a large degree.
This shows that weakly-magnetized accretion neutron stars could be considered to be candidates for
PULXGs.



Streszczenie
(Abstract in Polish)

Niniejsza praca sklada sie z trzech artykutéw dotyczacych zjawisk zwiazanych z akrecja na gwiazdy
neutronowe oraz wprowadzenia opisujacego ogélnorelatywistyczna magnetohydrodynamike promie-
nista (GRRMHD), metody numeryczne do rozwiazywania réwnafi GRRMHD na komputerze, dyski

akrecyjne, gwiazdy neutronowe i pewne niepublikowane wyniki.

Motywacja dla duzej czesci pracy w tej rozprawie sa pulsujace ultrajasne Zrédia promieniowania
rentgenowskiego (PULX-y). Sa to bardzo jasne (L < 103° erg s—!) pozagalaktyczne punktowe zrédta
promieniowania rentgenowskiego obserwowane poza centrami galaktyk, ktére wykazuja réwniez
spojne pulsacje o okresie 1 s. Pulsacje te wskazuja na obecnos¢ gwiazd neutronowych, tak wiec
obserwowane jasnosci musza by¢ wielokrotnie wieksze od granicy Eddingtona (Lgqq). Znaczna
cze$¢ tej rozprawy poswiecona jest zrozumieniu proceséw fizycznych, ktére mogltyby pozwoli¢
akreujacym gwiazdom neutronowym na uzyskanie tak duzych jasnoéci, przy wykorzystaniu symulacji

numerycznych i w niewielkim stopniu obliczer analitycznych.

W rozdziale 2, ktéry sktada sie z publikacji Abarca and Kluzniak (2016), rozszerzytem wyniki
z Wielgus et al. (2015) o analize perturbagji liniowych pierwszego rzedu, aby zbada¢ oscylacje wokét
konfiguracji rownowagowej atmosfery podtrzymywanej przez promieniowanie. Chociaz praca ta nie
dotyczy bezposrednio PULX-6w, stuzy jako ilustracja koniecznosci uwzglednienia promieniowania
w hydrodynamice relatywistycznej, aby wiasciwie opisac fizyke akrecji na gwiazde neutronowa
i w ten sposéb pomaga przygotowac grunt pod nastepne dwa rozdziaty. Gléwnym wynikiem tej
publikacji bylo stwierdzenie, ze tryb wlasny o najnizszej czestotliwosci jest zgodny z oscylacjami
kwazi-okresowymi (QPO-y) o czestotliwosci 300-600 Hz, obserwowanymi w kilku matomasywnych
rentgenowskich uktadach podwéjnych z rozbtyskami rentgenowskimi. Jednakze, gdy w obliczeniach

uwzgledniono pelne efekty oporu promieniowania, okazalo sig, ze oscylacje sa przettumione.

Druga praca, Abarca et al. (2018) zamieszczona w rozdziale 3, dotyczy symulacji super-Eddingto-
nowskiej akrecji na czarna dziure i na nienamagnetyzowana gwiazde neutronowa, przy czym twarda
powierzchnia tej drugiej zostata zaimplementowana przez warunek brzegowy na wewnetrznym
promieniu, ktéry absorbuje moment pedu lecz odbija skfadowa radialna. Symulacje wykazaty, ze na
powierzchni gwiazdy neutronowej gromadzi sie gaz i wypelnia obszar tak duza iloécia materiatu,
ze promieniowanie uwalniane przez dysk akrecyjny uderzajacy w powierzchnie zostaje uwiezione.
Promieniowanie, ktére zdotato sie wydosta¢, okazato sie by¢ prawie izotropowe i o jasnosci okoto jed-
nej jasnosci Eddingtona, co w zadnym wypadku nie przypomina ULX. Praca ta pozwolita rozdzieli¢
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ABSTRACT

efekty wilaczenia pola magnetycznego i twardej powierzchni do symulacji akrecji na gwiazdy neu-
tronowe.

Ostatni rozdzial dotyczy pracy (Abarca et al. 2021), w ktérej przeprowadzitem dwuwymiarowa
osiowo-symetryczna symulacje GRRMHD super-Eddingtonowskiej akrecji na gwiazde neutronowa
z dipolowym polem magnetycznym 2 x 10! G. Aby poradzi¢ sobie z duzymi magnetyzacjami
wystepujacymi w magnetosferze, zaimplementowatem metode z Parfrey and Tchekhovskoy (2017)
i przystosowatem ja do pracy z symulacjami GRRMHD. Uzylem takze warunku brzegowego, ktéry ma
modelowa¢ gaz uderzajacy w powierzchnie, ulegajacy szokowi i uwalniajacy czes¢ (w tym przypadku
0.75) swojej energii kinetycznej jako wyplywajace promieniowanie. Dysk uformowany w symu-
lacji jest obciety przez pole magnetyczne, a przeplyw jest skierowany wzdluz linii pola, tworzac
kolumny akrecyjne. U podstawy kolumny uwalniana jest duza ilo§¢ promieniowania, ktére zostaje
skolimowane przez wyplywajacy gaz, zatem gdy dociera do obserwatora, wydaje sie pochodzi¢ ze
Zrédia wielokrotnie jasniejszego (~ 140 Lgqq) niz w rzeczywistosci. To oznacza, ze uklfad jest w stanie
w znacznym stopniu skupia¢ wiazke promieniowania. Wynika z tego, ze stabo namagnetyzowane

akrecyjne gwiazdy neutronowe moga by¢ uwazane za kandydatéw na PULX-y.
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1 Introduction

The subject of this thesis is a collection of extremes. From the fields of physics and astrophysics
are united the extremely hot, extremely bright, extremely heavy, extremely fast, and extremely
magnetized. The equations describing the physical processes are so complicated that they must be

solved numerically on a super-computer using hundreds to thousands of processors.

The astrophysical motivation is based on the phenomena of pulsating ultraluminous X-ray sources
(PULXSs), extra-galactic objects emitting copious amounts of intense X-rays alongside coherent pulsa-
tions. The most widely accepted explanation for these sources involves super-Eddington accretion

onto neutron stars.

Neutron stars are highly compact, and understanding them requires the invocation of Einstein’s
theory of general relativity (GR). In almost all astrophysical situations, the emission of X-rays can be
understood as a consequences of the accretion of plasma onto a compact object. Plasma flows are
governed by the equations of magnetohydrodynamics (MHD). Furthermore, the amount of radiation
produced is enough to have a dynamical effect on the accreting plasma, and so the evolution of
radiation must be included along with plasma using radiation hydrodynamics (RHD). Stitching
it all together we have the relevant physical laws used in this thesis, general relativistic radiation
magnetohydrodynamics (GRRMHD).

In this introduction, I will describe the equations of GRRMHD (Sec. 1.1) and show how they are
solved using advanced numerical methods (Sec. 1.2). I will then lay the astrophysical foundation by
discussing accretion disks (Sec. 1.3), the primary laboratories of GRRMHD, and finally, I will finish
the discussion by focusing on accreting neutron stars and their magnetic fields (Sec. 1.4).

1.1 General relativistic radiation magnetohydrodynamics

1.1.1 General relativistic magnetohydrodynamics (GRMHD)

The strong gravity around black holes and neutron stars requires a fully relativistic formulation of
hydrodynamics. A modern and complete reference on the subject is provided in Rezzolla and Zanotti
(2013) which contains a proper derivation of the following equations which describe the evolution of

a perfect fluid starting with a relativistic version of the Boltzmann equation.
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1. INTRODUCTION

The evolution equations for a perfect fluid in general relativity are given by,

Vu(pu) =0, (1.1)
vV, T =0, (1.2)

where V, is the covariant derivative. These equations describe conservation of mass (Eqn. 1.1) and
conservation of energy-momentum (Eqn. 1.2). The mass conservation equation is comprised of
the fluid rest mass density, p, and the fluid four-velocity, u*. The latter equation makes use of the

stress-energy tensor of a perfect fluid which can be written in component form as
T = (p+ p + ting)u'u” + pg"”, (1.3)

and which also includes the fluid internal energy uin; and pressure p = (7 — 1)uint, which is related to
the internal energy by the adiabatic index . It is also possible to relate the pressure to the density

through the ideal gas equation of state,

p= :ZPT, (1.4)
where kp is the Boltzmann constant, m,, is the proton mass, and 7' is the temperature which comes
from assuming a Maxwell-Boltzmann distribution for the individual particle velocities.

A physical interpretation of the stress-energy tensor, 7+, is the flux of the “11” component of
momentum in the “v” direction. T® would then be the fluid energy density, 7% would be the
fluid momentum density, and T i gives the fluid stress-tensor where the diagonal components 7' i
correspond to the fluid pressure, all these quantities can be read off from Eqn. 1.3 (1,5 = 1,2, 3).

I have also introduced the metric, g,, whose components dictate how to measure distances in
four dimensional space-time. In this thesis, I am only considering at most slowly-rotating objects,
so in every instance it is sufficient to use the Schwarzschild metric whose components in spherical

coordinates are given by,

ds? = g datda” = — <1 - 2g¥> cdt? + (1 — 2;?%) 1d7“2 +72(d6? + sin 0 d¢?). (1.5)
The Schwarzschild metric becomes singular at r = 2GM/ 2= 2ry, where r, is the gravitational or
mass radius. This radius, the Schwarzschild radius r, = 2r,, gives the location of the event horizon,
the surface from below which no information can escape. Keep in mind that this is only a coordinate
singularity which can be remedied by a clever change of coordinates, while the true singularity at
r = 0 is always present.

From this point on, as is conventional, I will switch to geometrical units where ¢ = G = 1, which
simplifies many of the equations. Thanks to Birkhoff’s theorem, we can also use the Schwarzschild
metric to describe the space-time outside of a non-rotating neutron star. In this case, we do not need
to worry about singularities at all since the typical radii of neutron stars have R 2 5r,.

Astrophysical fluids are mainly comprised of hydrogen gas, and at sufficiently high temperatures,
T > 10* K, the hydrogen atoms becomes ionized forming a plasma, a collection of protons surrounded
by a sea of electrons which are free to flow and produce currents which generate magnetic fields,
which in turn affect the motion of the plasma producing more currents and so on. This self-interaction
causes the equation of motions for plasma to be highly nonlinear.
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1.1. General relativistic radiation magnetohydrodynamics

A relativistic formulation of electrodynamics can be found in Misner et al. (1973) and for relativis-
tic magnetohydrodynamics (MHD) one can find an extensive reference in Anile (1989) but useful
summaries are given in Komissarov (1999); Gammie et al. (2003).

The most basic way to formulate a theory of electromagnetism, is to take a charge and move it
around and measure the force on the charge. If a test charge is in an electromagnetic field, then one
will measure one force when the charge is stationary, the source of which is called the “electric” field,
E, and one force which is only present when the charge is in motion necessitating another field called
the ‘magnetic’ field, B. After enough measurements, it might be possible to notice a pattern and to
write down the Lorentz force as a function of these two fields, the particle velocity, and the charge, ¢,

F = ¢(E +u x B). (1.6)

In relativity, one finds that the usual electric and magnetic fields, E and B respectively, are rather
two sides of the same coin, where one field can be transformed into another via Lorentz boost i.e.,
the fields will change when measured in a different frame. Thus, it is necessary to describe them as
one object, an antisymmetric rank-two tensor F*¥, the electromagnetic or “Faraday” tensor. Using
the same process, one might measure the six independent components of the tensor in some (locally
inertial') frame and write down the Lorentz force as a function of the Faraday tensor and particle
4-velocity,

mat = gF*a,, (1.7)

where @* is the four-acceleration of the particle, finding the components of F* to be,
0 El EQ ES
—El 0 Bg —BQ
-By -B; 0 DB
—Eg BQ —Bl 0

J , (1.8)

where E = E£? and B = B’ are the usual electric and magnetic fields that can go into Eqn. 1.6. Of
course Eqn. 1.7 is true in any frame, and one can recover a different set of E and B in another frame

from the Faraday tensor as,

E' =% (1.9)
7 1 1]
B! = ieﬂfij, (1.10)

where €% is the Levi-Civita symbol and the metric signature is (—, +, +, +). It is then possible to
construct the stress-energy tensor for electromagnetism,

) 1
Thiny = F*“Fo — Zg’“’FagFaﬁ, (1.11)

which behaves as you might expect, i.e., in an inertial frame T (OISM) = (B2 +B?)/2 gives the electro-
magnetic energy density, T(()EiM) — E x B gives the Poynting flux and TgéM) gives the Maxwell stress

tensor. When we take a covariant derivative we get

VTl = —F" e, (1.12)

! A vector whose components are given by v* in the lab frame will have components in an inertial frame indicated by o*.
In GR it is always possible to identify a locally inertial frame in which (to first order) " = n** = diag(—1,1,1,1).
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1. INTRODUCTION

where J* is the four-current density, analogous to qu* which means that Eqn. 1.12 is just minus the

Lorentz force on a fluid with current J#, which would evolve according to,
vV, TH = FFreJ, . (1.13)

Then, if we simply add the two stress-energy tensors together while renaming the fluid contribution

as T(‘ﬁ’ey) (Reynolds stress), we get the full conservation equations for GRMHD (Dixon 1978),

n wo\
Vi (Thengy + Thiry) = 0- (1.14)

The form of the equations I have just presented are not always very useful in practice, so I will
apply a simplifying assumption to reformulate stress-energy tensor. I will assume that the fluid is
sufficiently conductive so that I can invoke the ideal MHD approximation in which electric fields are
generated purely from Faraday’s law, E = —v x B, which, in relativistic language, implies that the

2

Lorentz force in the fluid frame* vanishes giving,

U F" =0 = w, F" = 0. (1.15)

We can then introduce a new four-vector,

1
P = 5eﬂmuyz«}m (1.16)

using the Levi-Civita tensor, e#*** (a fully covariant analog to the Levi-Civita symbol). The magnetic
four-vector, b*, has the property it is orthogonal to the four-velocity, u,b"* = 0. Eqn. 1.16 can be
inverted to get,

Fr — etVi Ay, by, (1.17)

which then leads to a much simpler form of the stress-energy tensor (Komissarov 1999; Gammie et al.
2003),
v 1 v
Ty = b uru’ + ibzg“ — b"'b,. (1.18)
So far, I have shown how the plasma responds to the influence of an electromagnetic field, but to
complete the theory, we need to know how the electromagnetic field evolves as well. To do this, one

can then take the Hodge dual of F*,

1
*F,, = §F°‘66afgw, (1.19)
which has a much simpler form in terms of b#,
*FHY = bHru” — bYu. (1.20)

This allows us to write the conservative form of Maxwell’s equations,

YV, (xF"™) =0, (1.21)
VPR = ], (1.22)

*Here, I have introduced a special inertial frame, the fluid frame (denoted by wide hats %) which has the additional
property that in this frame, the fluid velocity vanishes z* = (1,0, 0, 0).
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1.1. General relativistic radiation magnetohydrodynamics

in their simplified forms. It is possible to check that in the orthonormal fluid frame, the more familiar
version of Maxwell’s equations are recovered. The second equation is used to compute the four-current
density, J¥, although in ideal GRMHD, the current is not dynamically relevant.

The first equation is the most important for the evolution of the system and encodes the induction
equation and the zero divergence condition of the magnetic field. If we bring back the magnetic 3-field
following Komissarov (1999) we have,

v = B'utgiy, (1.23)
) Bt + ptyt
b — Zt v (1.24)

where products with repeated instances of i correspond to sums over spatial components. Including
the magnetic 3-field gives simple forms of the induction equation and zero-divergence conditions,

Oi(v—=gB') = —0; [V—g(Wu' — b)), (1.25)
9; (V—gB") =0, (1.26)

where g = det g,,,. Then combining Eqns. 1.14 and 1.25 along with an equation of state for the gas
pressure give a set of closed equations for the full GRMHD system.

1.1.2  General relativistic radiative magnetohydrodynamics (GRRMHD)

If we move to even higher temperatures, the thermal radiation of the ionized plasma begins to have
a dynamical effect (as opposed to a purely thermodynamic effect, i.e., cooling the plasma) on the fluid
motion. A full reference of radiation hydrodynamics is provided by Mihalas and Mihalas (1984), but
I will be mostly paraphrasing Sadowski et al. (2013), who provides a streamlined exposition of how to
include radiation into the GRMHD equations.

One usually begins their study of radiative transfer by consulting Rybicki and Lightman (1986)
who start by introducing the most fundamental radiation quantity, the specific radiative intensity, I,
which is a function of position x, direction t, and frequency v. There are a number of situations in
which it is important to consider the intensity as a function of frequency but I do not discuss any of
them in this thesis, therefore we make the ‘grey” approximation and assume all radiation quantities
are integrated over frequency, I = f I, dv.

We can then proceed to take various moments of the intensity by integrating over all directions, this
is equivalent to integrating over the unit sphere, [ dQ. Again, we simplify our lives by first working
in the orthonormal® fluid frame, where the various radiative quantities have simple definitions. The
zeroth moment corresponds to the radiation energy density,

E = / 1dQ. (1.27)

We can take higher moments by considering integrals of the intensity along the three unit vector
directions,

Fi= / INdQ, (1.28)

3The fluid frame can be constructed so that its basis vectors form an orthonormal tetrad.
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1. INTRODUCTION

where N can be thought of as # - ' where ' are the unit vectors along each dimension of the
considered space. This gives the three components of the radiative flux. The second moments form

a matrix which is computed via,
P = / IN'N7dQ, (1.29)

which corresponds to the radiation pressure tensor.

We can now construct the full radiation stress-energy tensor which is constructed from the various

~ E Fi
RH”:<A. A> (1.30)
Fi pii

moments we just computed,

We then need two transformations to get back to the lab frame quantities. Up until now, [ have not
described the transformations necessary to move between a coordinate basis and an orthonormal
tetrad basis. If we consider a fluid which has four-velocity as measured by the orthonormal zero-
angular momentum observer (ZAMO?) , @* (Bardeen et al. 1972), then we can move between the
ZAMO frame and the fluid frame using a Lorentz boost defined by,

_ y v

j — e

A V(U) = (,-Y’D] 51] " 177"5]‘@’2)/71) ) (1.31)
] )

where ¢ = @'/i* and v = 1/v/1 — ©2. Then, to move between the lab-frame and the orthonormal

ZAMO frame, we can use the tetrads defined in Bardeen et al. (1972), e#,,, é*,, so that a vector in the

lab-frame z* can be transformed to the ZAMO frame and vice versa via,

it =gk, (1.32)

zt = zvet,. (1.33)

The ZAMO frame is useful for many calculations because the metric is locally Minkowski, but the
transformation is slightly cumbersome. Luckily, as mentioned previously, I am only concerned with
the Schwarzschild geometry in this thesis, and so one can take, for example, the orthonormal tetrad
used in Abramowicz et al. (1990),

1
~t __ ~r ~0 ~p :
er=+1=-2M/r, €,=———=x, é&g=r &%, =rsinb, (1.34)
V1 —2M/r

and all other components equal to 0, with the inverse transformation e, given by the reciprocals.
Finally we can perform the full transformation between the Boyer-Lindquist (essentially spherical

coordinates) lab frame and the orthonormal fluid frame where each transformation gets one matrix
for each index,

RM = et oe” . R7", (1.35)
RM = AP, (@)A” . (2)R7", (1.36)

again, with the inverse transformations for the other direction.
Now that we have a prescription to calculate R*” we can write down the conservation law of
GRRMHD,
V(T + R*™) = 0. (1.37)

*Quantities in the ZAMO frame are denoted by tildes 5*.
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1.1. General relativistic radiation magnetohydrodynamics

This is similar to what was done for GRMHD, however, in this case we don’t have the Lorentz force

and Maxwell’s equations to close the system. Instead we need to split this equation into two,

v, T =G, (1.38)
V,R™ = —G". (1.39)

Now we can evolve gas and radiation separately as fluids, with their secular evolution provided
by the homogeneous version of the above equations, and the coupling provided by the radiation
four-force density, G¥, provided in Mihalas and Mihalas (1984) as

GH = / (xv I, — 1 )N'dvdQ, (1.40)

where x,, I,, and 7, correspond to the frequency dependant opacity, intensity, and emissivity. This
equation has a much simpler form in the fluid frame,

. E —4rB
GH = (“( T )> , (1.41)
XF"

where B = oT*/m is the frequency integrated Planck function for a black body with temperature,
T, and o is the Stefan-Boltzmann constant. The total opacity coefficient x = & + ke is the sum of
the frequency integrated absorption and electron scattering opacities. Depending on the state of the
gas, there are several radiative processes which can be important, and different ways to compute
the frequency integrated quantities, but the basic structure of G” is the same. An addition to G is
necessary when temperatures reach such levels that Comptonization becomes important. There are
a number of ways to do this, but the general idea is compute a fitting function which approximates
the energy exchange between gas and radiation as a function of their temperature difference with

functions that drive that difference to zero in the fluid frame. As this is purely a thermodynamic

t
Comp*

number density of photons, as well as the radiation energy density, so that the energy per photon

process, it is only introduced by a factor G A more advanced method involves evolving the

becomes important. This is explained in detail in Sadowski and Narayan (2015), but I will not repeat

the discussion here because I rely on the simpler method in this thesis. The total radiation four-force is

t
Comp

with a subscript. The new expression for G# is then transformed to the lab frame to get G¥.

then computed via Gr=G ut + ég , where now (A?’g is computed from Eqn. 1.41 and relabelled
Now that we have an expression for G”, it is possible to solve Eqns. 1.38 and 1.39 along with the
equation for mass conservation and the induction equation in the coordinate basis by expanding the

covariant derivatives,

(V=gT")) + 0;,(V=gT",) = V=gT"\I'p. + vV—9G, (1.42)
(V=gR')) + 9;(v/—gR",) = V=gR"\T},. — v/—9G.. (1.43)
A

Here, for the first time in this thesis, I have used the Christoffel symbols, I'},., coordinate dependent

VK’

objects which are computed from derivatives of the metric.

The M, closure scheme

Eqn. 1.43 evolves R in time and the symmetry of the stress-energy tensor provides R**. What then

of the remaining components, R%? For this, it is necessary to use a closure scheme, something to
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1. INTRODUCTION

fill in the rest of the tensor when only the first row and column are known. A natural choice for
GRRMHD is the M; closure scheme (Levermore 1984). The premise assumes that there exists a frame®,
not necessarily corresponding to the fluid or lab frames, in which the radiation pressure tensor, with

radiation energy density E, is isotropic,

E/3 0 0
Pi=| o B3 o |, (1.44)
0 0 E/3

and in which the radiation flux vanishes, F" = 0. If we define the four-velocity of such a frame as uf,
where 4, = (1,0,0,0), then we can write the radiation stress-energy tensor in the compact form given
by,
B = 2 Bafiah + < Bg 1.45
= g Bugip + 3B (1.45)

This is a covariant equation, and so it is true in any frame. If we transform the vector and tensor
quantities to the lab frame then we simply have,

R = %Euﬁulf{ + %Eg“”. (1.46)
If we then assume that we know R* from Eqn. 1.39, it is possible to solve for E and u’é, and so the
rest of the tensor can be constructed. M; allows the radiation to flow along geodesics in the optically
thin regime, and to diffuse through the gas in the optically thick regime.

The M, closure scheme causes the gas and radiation to be nearly symmetrical in their formulation.
The microscopic behavior of gas is described by the Boltzmann equation, and the radiative transfer
equation describes the evolution of radiation. Then by taking moments up to second order of both
equations, we get the conservation Equations 1.38 and 1.39. M; introduces the radiation velocity which
obeys the same rules in GR as the fluid velocity, even though photons travel along null geodesics.

Since, in this formulation, radiation behaves like a fluid, it is subject to drawbacks in situations
where fluid behavior would not adequately describe the radiation field. The most obvious is when
two beams of radiation from different sources intersect. The evolution of the intensity should be
independent along different angles, and so the two beams are expected to pass through each-other
without interacting. In M1, however they collide and interact. It is possible to alleviate this problem to
some degree by trying to solve the problem along several directions using a variable Eddington tensor

scheme, but this introduces a large degree of complexity to the problem.

1.1.3 Levitating atmospheres

The equations of motion for GRRMHD are highly non-linear and require the use of a computer to solve
in nearly all cases, even when using the simplest of closure schemes. However there is one situation
where even an analytical treatment of radiation in GR provides an interesting result. A peculiar
consequence of radiative transfer in the context of general relativity is the existence of the Eddington
capture sphere. I will, for a moment, revert to the Newtonian regime to better illustrate the concept.

Consider an isotropically radiating sphere or point source. The luminosity of such a source is simply

5Again, Iintroduce yet another frame, the radiation rest frame, this time denoted with bars .
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1.1. General relativistic radiation magnetohydrodynamics

given by the integral of radiative flux over a sphere centered on the source,
L = 47r?F. (1.47)

It can be easily shown from the definition of intensity that the flux should decrease proportionally to
72 making luminosity constant with radius. If one measures the luminosity at one radius, then one
knows the luminosity at all radii. If the luminosity of the source is known a priori, then it is simple to
compute the flux as a function of radius. Let us now consider the force a plasma parcel feels due to

radiation pressure around an isotropically radiating sphere. The radiation force, Fi, acts on electrons,

L
FR:@F:@

c c 4mr?’ (1.48)

where ogg is the electron scattering cross section and I have temporarily restored the c. If the source

has mass, M, then we can also figure out the gravitational force on the plasma. The gravitational force

on electrons is negligible compared to protons, and so we get,
GMm,,

Fy=— et (1.49)

Electrons and protons are tied together due to Coulomb interactions and so the total radiation force
would be the sum of the radiation pressure on each electron, and the total gravitational force would
be the sum of the forces on each proton. If we consider ionized hydrogen, then the number densities

of protons and neutrons are equal, which we can write as n. The total force density,

orsL

F=n(Fr+F,)=n < — GMmp) i (1.50)

mc r2

This shows that if the two forces are balanced at one radius, then they should be balanced at all radii,
and the luminosity must necessarily be

4rGMmye
Lpgg = ——=, (1.51)
OES

hereby referred to as the Eddington luminosity. The Eddington luminosity is an important unit of
measurement in astrophysics and represents the maximum luminosity a spherical source (of pure
ionized hydrogen) should have before it is blown apart by its own radiation pressure. One should
note that the Eddington luminosity is purely a function of mass and physical constants.

Once general relativity is introduced, the picture changes. In the Schwarzschild metric, due to

gravitational redshift, the luminosity of a source decreases with distance,

Loo

Lo =5

(1.52)

where L, is the luminosity observed at infinity. It can then be shown that there is only one surface
where the radiation and gravitational forces balance (Abramowicz et al. 1990),

2M
1-— (Loo/LEdd)Q’

referred to as the Eddington Capture Sphere (ECS; Stahl et al. 2012; Wielgus et al. 2012). Below this

surface, radiation pressure dominates over gravity, and above, gravity dominates causing rgcg to be

TECS = (1.53)
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surface of stable equilibrium. It has also been shown that plasma traveling around Eddington or even
near-Eddington sources should have its angular momentum removed due to the Poynting-Robertson
radiation drag (Bini et al. 2009; Sok Oh et al. 2011). A basic explanation is that a particle moving
transversely through uniform radiation field does not actually see a uniform radiation field in its
frame. Instead the radiation should be relativistically beamed so that there is a component of the flux
along the direction of motion, slowing the particle down. Wielgus et al. (2015) pointed out that if
enough particles are collected, then an optically thin, hydrostatic atmosphere should form with its
pressure maximum located at rgcs. Such an atmosphere should be completely detached from the
radiating object, levitating above the surface and have so been deemed, levitating atmospheres. Wielgus
et al. (2016) extended the calculation to show that optically thick levitating atmospheres could also
be constructed. Such a result is only possible when considering radiation in a GR framework and
provides a great example for why GRRMHD is important in the first place.

1.2 Numerical methods

The equations of GRRMHD comprise twelve coupled highly nonlinear partial differential equations.
In almost all cases it is necessary to solve them on a computer. Over the next section I will explain how
this is done in general and how it is done in the GRRMHD code Koral, my primary tool throughout
this thesis.

1.2.1 Godunov, a finite-volume method for conservation laws

While all of the equations of motion look rather complicated, they all have the same basic structure,
0

EU +V.-F(U)=S8(U). (1.54)
In words, the rate of change of some vector of quantities, U, plus the divergence of the flux of those
quantities (which is in general a function of those quantities), F(U), is equal to the source of those
quantities (again, in general a function of those quantities), S(U). This is the basic differential form
of a conservation law and there are many well developed methods to solve them. The method I use
can more easily be seen from the integral form of Eqn. 1.54 were we take an integral over the volume

defined by X and use the divergence theorem to perform a surface integral over its boundary, 0%,

8/ Udv+?{ F-ﬁdA:/ Sdv. (1.55)
ot Jx % ¥

This is called the conservative form of the equation and shows us that the rate of change of a conserved
quantity in some volume of space plus the total flux of that quantity leaving the volume equals the
source of that quantity throughout the volume. The conservative form is able to handle discontinuities
due to the lack of spatial derivatives, which would correspond to shocks for the GRRMHD equations.
The conservative form also shows us how we would discretize the equations. A complete reference is
given in LeVeque (2002) but I will outline the general idea.

Consider dividing space into many tiny volume units, AY;. Then we care only about the average6
amount of the conserved quantity, U;, inside the volume (now the horizontal bar refers to the average

®The formulation is the same if we consider the total amount of the conserved quantity, we would just have to multiply
through by AX;.
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1.2. Numerical methods

of the quantity, not the radiation rest frame). It is convenient but not necessary’ to use simple shapes
for AY; such as cubes or cuboids in Cartesian coordinates, x, y, z. The individual volume elements
(grid cells) can be indexed in the conventional way, with ¢, j, and %k indexing the z, y, and z coordinates,
respectively. This gives, AY;;;, = AzAyAz® leaving us with,

/ udv = I_Jijk.A:cAyAz. (1.56)
AXijk

Now we can consider the fluxes on each of the six faces. It is typical to refer to a cell face using a
‘halt’ index, for example F; /5 ; , would be the vector of fluxes across the interface between cell i, j, k
and cell i + 1, j, k with commas added to the indices for clarity. The dot product F - ii introduces an
orientation so that when we sum the fluxes (performing the integral) the three ‘+1/2’ fluxes receive
a positive sign and the three “—1/2’ fluxes receive a negative sign. The projection of the flux vector
onto the normal vector is done in the calculation of the flux components, i.e., F; /s j 1, is calculated
differently than F; ;5 using the formulas for the z components of the fluxes instead of the y
components, which I notate with an upper index. The differential, dA, requires multiplying the fluxes
by the areas of the faces so the z fluxes get factors of AyAZ and so on. We can then approximate the

integral,
éAZW Foadis (Ff+1/2,j,/c - Ff—l/zj,/c) AyAz

+ (F?,j+1/2,k - F?,j—l/zk) Azlz
+ (F esige —Fo /2) AzAy (1.57)

Next, we need to approximate the time derivative. The simplest approximation is to use a first

order difference to get,
Uy N UZ’? — Ul (1.58)
ot At ’ '

where we have introduced the time index as a superscript. The flux term and the source term do not

contain time derivatives so we are free to use their values anywhere from time n to time n + 1, or to
try to compute some estimate for the average along the time interval. For now I will avoid making
the choice and drop the time indices for the flux and source terms altogether. It is now possible to
integrate Eqn. 1.55 numerically by introducing the approximations above and solving for U 1.

ijk
U =00 - % (Fo /2 — Fiajosn) (1.59)
N 2; (F?,Hl/lk n FE’J%/Q,k)
h % (Fi’z,j,kﬂ/z - Ff,j,k—1/2>
+Sijk-

“It is usually always possible to perform the calculation on a Cartesian grid but to include a coordinate transformation
so that more complicated geometries can be considered (such as spherical). In grid-based general relativistic hydrodynamics
(GRHD), the geometrical information is encoded in the metric and all its derived quantities so it is rather straight-forward to
consider more complicated geometries. Furthermore, such schemes exist which use a moving mesh where the grid points
are advected with the fluid, and the grid constructed at each time step using the Voronoi tessellation of an unstructured
mesh (Springel 2010; Weinberger et al. 2020).

8The grid spacings, Az, Ay, Az, do not have to be equal to each other. They do not even have to be constant, then they
would be indexed as Az;, Ay;, Az, but I will assume they are constant for simplicity.
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To evolve the equation forward in time, it is then only necessary to know the current state at a specific
cell ijk, the source term at cell ijk, and the six fluxes along with the lengths of cells in each direction.
To evolve the entire system, it is necessary to repeat this process for each cell. Much of the complexity
involves calculating the fluxes on the faces of the cells, the only respite is that the value of the flux
at one interface can be used twice for each of the two neighboring cells. This makes sense because
the value of the flux should depend on the states of both sides of the interface. Choosing a suitable
method to compute the interface flux is the last step in the process. The numerical method I described
here is called the Godunov scheme (Godunov and Bohachevsky 1959), a type of finite-volume method
for conservation laws .

The Riemann problem

The Godunov scheme approximates the continuous function U(x) as U;j;. This is the piecewise
constant approximation where the whole cell is assumed to have constant values for each variable in
the vector of conserved quantities. At the interface between each cell (for example between cells ijk
and ¢ + 1, j, k) we then have a discontinuity, a left and right state, Ur = I_Jijk and Uy, = I_Jz'+1,j,k, with
corresponding left and right fluxes, F;, = F(U) and Fp = F(Upg), from which we need to produce
a single vector of fluxes. This is what is referred to as the Riemann problem. In one dimension, it
consists of two fluids with different but constant states separated by an imaginary membrane. The
membrane is then removed and the system evolves in time. We are then interested in what the fluxes
are at the location of this membrane at some later time after the system begins to evolve.

The Riemann problem can be solved exactly in some cases. One should consult Toro (2009) for an
in depth treatment of the subject. A common test problem for computational fluid codes is the Sod
shock tube problem (Sod 1978), a specific case of the Riemann problem which has a semi-analytical
solution. However, such methods are usually time consuming, and if they have to be computed at
every cell interface for every time step, it becomes impractical. It is much easier, and usually nearly as
effective, to use an approximate solution.

One strategy for coming up with approximate Riemann solvers is to approximate the solution by
the superposition of a number of waves moving left and right after the system begins to evolve in
time. A two-wave solution which uses the maximum and minimum velocity signals was proposed by
Harten et al. (1983) hereby referred to as the HLL Riemann solver. If the maximum and minimum
signal velocities (or maximum left and right moving signal speeds), Sk and S}, respectively, can be
computed (there are a number of ways to do this), then the HLL Riemann solver gives, for left and
right states, U, and Ug, with corresponding left and right fluxes, F, and Fp,

Fr 0< S
F, — S.F _
Fipp, = { DREL 5L Z;_ngR(UR Un) g, <o<sy. (1.60)
Fr Sr <0

If the minimum signal velocity, Sy, is positive, this means all waves should be moving to the right
and so one can use the flux corresponding to the left side of the interface. If the maximum signal
velocity is negative, then the opposite is true and all waves move to the left, so we take the flux from
the right. The intermediate case takes a combination of fluxes weighted by the wavespeeds with the
addition of a term that computes the overlap of the left and right conserved quantities.
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1.2. Numerical methods

HLL is used extensively due to its simplicity while still producing meaningful results, but many
other Riemann solvers exists. There is a third type of wave in ordinary hydrodynamics which HLL does
not consider, the contact discontinuity corresponding to a jump in density without a corresponding
jump in pressure. HLL is unable to provide satisfactory solutions when the contact discontinuity
becomes important and a three wave Riemann solver was proposed by Toro (2009) (HLLC) which
includes it. In MHD and GRMHD one also has to consider Alfvén and magnetosonic waves. These
wave speeds can be used in the HLL or HLLC Riemann solvers but more accuracy is achieved by
considering even more intermediate states as in the HLLD Riemann solver (Miyoshi and Kusano 2005)

which assumes a five wave solution at the interface.

Wavespeeds and the CFL condition

There are a number of ways to compute the minimum and maximum signal velocities, Sz, and Sg.
The general strategy usually involves writing the conservation laws into a linear or quasi-linear form.

In one dimension with no source terms we have,

ou 0 ou ou
where OF
A0 =55

is the Jacobian of the linear system. The signal velocities then correspond to Eigenvalues of the
Jacobian. In ordinary HD, if ¢, is the sound speed then the three Eigenvalues correspond to,

Al =uU+cCs, Ao =1u, A3 =Uu — Cg, (1.62)

which would correspond to the shock wave, contact discontinuity and rarefaction wave respectively.
The HLL Riemann solver considers only the shock and rarefaction waves for both the left and right
states.

In magnetohydrodynamics the functional form of A is rather complicated, and only in the co-
moving fluid-frame does it become (relatively) easy to find the eigenvalues analytically (Komissarov
1999). The resulting eigenvalues correspond to three additional waves, the fast/slow magnetosonic
waves and the Alfvén wave, and serve as their phase velocities in the fluid frame. The phase velocity
is given by 12 = ©%/k2, where & is the wave frequency and k2 = k‘k77;; (a reminder that n;; = d;; in
our metric signature) is the magnitude of the wave three-vector. We are only concerned with wave
vectors oriented along the coordinate axes (orthogonal to the cell interfaces) which makes it easy to
construct the wave four-vector k* = (@, %Z) in the fluid frame. Then one needs only to transform
the wave four-vector to the lab frame and recompute the various phase velocities u? = w?/k? (see
Komissarov 1999, for more details). An almost identical approach involves plugging wave solutions
into the linearized GRMHD equations to get a dispersion relation. One can then plug in the three k!
along the three coordinate axes, solve for w and again transform to the lab frame (Gammie et al. 2003).

In relativistic and radiative hydrodynamics the speed of light becomes important as well. In

relativity, the sound speed is given by,

P -1
cz = (8})('0 + uint)> , (1.63)
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assuming an ideal gas with an adiabatic equation of state p o p*'. AsT' — 4/3, ¢s — ¢/V/3. AT of 4/3
well describes a relativistic or optically-thick radiation-dominated fluid.

Speaking of radiation, it is also necessary to identify the radiation wavespeeds as radiation can be
evolved using an identical scheme. Luckily, the wavespeeds for gas and radiation can be decoupled,
as they are only relevant for the advective (homogeneous) part of the evolution equation. It may
be tempting to set the radiation wavespeeds to ¢ but if one computes the eigenvalues for A for
the radiation quantities, one will find they can drop to ¢/v/3. A problem occurs in the regime that
absorption « is very small, but total opacity x is very large due to the gas being in the scattering-
dominated regime. In this limit, the photons are not absorbed by the gas but merely bounce around,
scattering off electrons and diffusing through the gas via Brownian motion. However, nowhere in our
evolution equations did we include a diffusion equation. In face, if we use the “correct” wavespeeds
of +¢/+/3, then we would introduce large amount of numerical diffusion, which is unphysical. It is
possible, however, to limit the wavespeeds using a function of the optical depth of the cell, pxAz;,
in such a way that the resulting numerical diffusion matches the expected physical diffusion (for a
slightly more detailed explanation, see Sadowski et al. 2013).

No matter what the values or the type of waves the maximum and minimum signal velocities
correspond to, it is important that no signal travels the entire length of the cell in one time step,

Ax; > a;At, (1.64)

where a; is the maximum signal speed in cell i. This condition must be satisfied for every cell in the
simulation. Otherwise the computed fluxes from the Riemann solver would not be accurate as there

would be more waves and more states mixed into the solution. Therefore, one must limit the time step

so that,
At =C <A$i> : (1.65)

a;

where C' < 1 and that At is still less than the maximum signal crossing time for every cell in the
domain. This is known as the Courant-Friedrichs-Lewy (CFL) condition (Courant et al. 1928). One
can pick any value for C' less than unity and lower values of C' give more accurate and more stable
solutions however they also require longer to run so a balance needs to be found but in most cases
C ~ 0.5 is sufficient.

1.2.2 Higher order methods

Reconstruction methods

The original Godunov method is technically zero’th order accurate in space. We can achieve more ac-
curacy by moving from a piecewise constant approximation for U to a piecewise linear approximation.
To do this, first I will introduce the concept of primitive variables. While I never actually mentioned
it earlier, usually it is very difficult to compute the fluxes as a function of the conserved quantities.
Instead, it is easier to use a different set of variables referred to as the primitives, P. The primitives are
usually naturally well-defined quantities such as density, velocity, and internal energy for which the
computation of the fluxes and the conserved quantities is straight forward, i.e., F(P) and U(P) have
analytical expressions. The trade-off is that, we must also perform the inversion from conserved to
primitive variables, P(U), which, while simple for in ordinary HD, becomes much more complicated
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once additional physics is involved. In GRMHD is it necessary to perform the inversion numerically

such as with a Newton-Rhapson method. A good scheme for GRMHD is discussed in Noble et al.

(2006) who show that the system can be reduced to one equation by a clever change of variables.
Assuming that F(P), U(P), and P(U) can all be computed, then we are able to reconstruct the

primitive variables at the cell interfaces. If we can find slopes AAI} and % then the left and right
primitives at the cell interface Pﬁl /2 and PZ‘L+1 /2 can be computed as follows,

1 AP;
R _p o, 25
Pi+1/2 =P+ 2 Az’ (1.66)
1 AP;
L i+1
Piip=Pinn—3 Ar (1.67)

Then, one only needs to compute the left and right fluxes and conserved quantities and use a Riemann
solver and described above. And of course, I dropped the indices j, k for simplicity but it is still
necessary to include them in a full 3D scheme and so reconstruction must be performed three times
for every cell, once in each direction.

One must use caution when obtaining the slopes AAP;Z' , as it is possible to introduce new maxima

and minima into the approximate solution of U (and therefore P). This causes the numerical scheme
to become unstable producing spurious oscillations in the solution which grow with time. To avoid
this problem, it is necessary to use a total variation diminishing (TVD) scheme. A common method is
to use a slope limiter which adjusts the computed slopes to prevent the formation of new maxima
and minima. One widely used scheme is the generalized minmod (van Leer 1979) slope limiter which
produces a modified slope % as a function of AP_ =P, — P,_; and AP, =P,,1 — P;,

0 AP_AP, <0

AP, 1

Ao = An | min(BAP_,0.5(AP_ + AP.),0AP,) AP+ >0 , (1.68)
max (0AP_,0.5(AP_ + AP,) ,0AP,) APy <0

The minmod slope limiter is actually a one-parameter mix between the more diffusive van Leer
scheme (van Leer 1974) when 6 = 1 and the more accurate (but less stable) monotonized central (MC)
scheme (van Leer 1977) when 6§ = 2. A common choice is § = 1.5.

Slope-limiters have the additional function of preserving large discontinuities in the fluid across
cell interfaces. Numerical schemes which include these limiters are refereed to as shock-capturing

schemes.

Runge-Kutta

Probably one of first topics studied in an introductory course on numerical analysis is the numerical
solution to an ordinary differential equation (ODE) using the forward Euler method. What proceeds
immediately is usually a demonstration of how terribly inaccurate it is. It then follows that the next
topic would be methods to improve it. One such method is the midpoint method. For a differential

equation,

if one knows the value of = at time ¢, one can approximate the solution after a time h by first
performing an Euler step to time, ¢t + h/2, and then using the value of the derivative computed from
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the approximation at time ¢ 4+ h/2 to jump all the way from time ¢ to time ¢ + h. The formula for the
approximation at time ¢ + h is then,

z(t+h)=~x(t)+hf <£L’(t) + f(:v,t)g,t + Z) : (1.69)

It is not necessary to use the value at the midpoint to approximate the derivative for second-order
methods. Other values along the interval from ¢ to ¢ 4 h introduce trade-offs between accuracy and
stability. It is also not necessary to restrict oneself to only two steps or to a constant step size. Many
methods use a combination of nth and (n + 1)th order methods to judge the accuracy of the numerical
approximation in order to increase or decrease the step size when necessary, but this is not used in

computational hydrodynamics because the step size is controlled by the CFL condition.

1.2.3 Stiff ODEs and the semi-implicit method

Not every differential equation can be integrated using explicit methods. If we again consider the
most general first order differential equation,

)]
depending on the form of f(z,t) any explicit method no matter the order or size of the time-step
the integration becomes unstable and the equation is said to be stiff. A well known simple fix to
this problem is to use an implicit integration scheme. Consider the following finite difference where

instead of evaluating f(x,t) at time n as before we evaluate it at time n + 1,
"t = 2™ Atf(2™ ). (1.70)

This gives an equation which is implicit in z"™! and for all but the simplest cases, one must use
a numerical root finding algorithm such as the Newton-Rhapson method. Using a numerical root
finding algorithm every time step for every cell in a fluid simulation can be time consuming but in the

case of GRRMHD, it is the only reliable way to include the time evolution of the source terms, G,

1.2.4 Magnetic fields
The V - B = 0 condition in MHD

Much of our discussion so far has focused on the numerical solution of conservation laws of ordinary
fluids. We cannot however use exactly the same methods when Maxwell’s equations are involved.
While Eqn. 1.25, the induction equation, may look like an ordinary conservation equation, it is subject
to the constraint given by Eqn. 1.26, the zero divergence condition. Nothing in the previous methods
I have described is designed to obey such a constraint and so if one were to use them to evolve the
magnetic field one would find that the accumulated divergence of the magnetic field would quickly
cause the fluid to evolve in unphysical ways. There are many methods to alleviate this issue, several
of which are described in T6th (2000), two of which I will discuss below.

The first method is to simply remove the unphysical component of the magnetic field. Consider
a vector field, B*. From Helmholtz’s theorem, we know that we can write this field as the sum of

a curl and a gradient of two other fields, A and ¢ respectively,

B* =V x A+ V. (1.71)
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Taking the gradient of both sides gives us an equation (the Poisson equation) which can be solved for

o

V.-B* = V. (1.72)
Then, one can get a divergence-free field from the gradient of ¢,
B=B"-V¢=V xA. (1.73)

The drawback is that one needs to solve the Poisson equation fairly often, which is expensive and
non-local so it is difficult to parallelize. There are similar methods which do not remove the divergence
completely but they follow the same idea. This family of methods are called divergence cleaning
algorithms but there is a another family of methods whose advantages and disadvantages make them
more suitable for GRMHD codes.

The second method involves evolving the field in such a way that no new divergence is introduced.
Then, one only needs to start with a divergence-free field and it will be maintained for the duration of
the simulation. The basic idea is to compute the induced electric field, 2 = v x B, at four locations for
each component of B surrounding the point where B is to be evolved, and then to evolve B using
a finite difference in (2. This makes it so that any round-off errors which introduce divergence into the
field are cancelled out. This family of methods constitutes constrained transport (CT) methods (Evans
and Hawley 1988). The original CT methods uses a staggered grid, where the magnetic field is stored
and evolved, not in the cell centers, but in the center of the cell faces, then the four values of () are
computed at the cell corners. It is also possible to use the values of B and v at cell centers which are
then interpolated to the cell faces where the field is evolved and then interpolated back to the cell
centers. This is called flux-interpolated constrained transport (flux-CT) (T6th 2000). A simple description

of how it works is described in Gammie et al. (2003) which I will repeat here.

In 2D Cartesian coordinates in special relativity, the induction equation looks like

OB' = —0; (Vu' — b)) = —9;F7", (1.74)
where
F™ =,
F%W =0,

F* = p"y¥ — bYu”,

FY* = bYu® — bl

The Riemann solver will compute F**, F*Y at the location ¢ — 1/2, j (the interface between cell 7, j

and cell i — 1, j) and F¥¥, F¥* at the location i, j — 1/2 which I will denote with lower indices Fﬁl /2,57

Fiy;”_l /o €tc. The flux-CT method will replace these fluxes using a combination of neighboring fluxes
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in the following way,

g = 0, (1.75)

Fff;‘.’H/Q =0, (1.76)

~ 1

_ Yyx YT YT yx

Fizf/l/lj - g (2Fﬁ1/2,j + Fﬁl/z,jﬂ + Fﬁl/&jq - Fi,jfl/Q B Fi,j+1/2 B Fifl,j71/2 - Fz’—l,j+1/2) )
(1.77)

~ 1

Fg:‘c—lm = g (2Fg¢—1/2 + Fgfl,j—l/Q + Fzy—xl,j—l/2 - Fig?l/&j B Figfl/2,j B Fz‘x—yl,j—l/2 - Fﬁl,jﬂm) :
(1.78)

It is then straight-forward, but tedious to extend the scheme to 3D curved space.

Large magnetizations and force-free electrodynamics

There are many situations in GRMHD which require large magnetic fields such as the interior of
magnetically launched jets or in the magnetospheres of neutron stars. One measure of the strength
of the magnetic field is the ratio of the magnetic to rest mass energy densities, o = b?/(2p), referred
to as the magnetization. When the magnetization becomes high the numerical schemes of GRMHD
start to break down and become prone to error. There are a few reasons for this. First, in the stress-
energy tensor of a magnetized fluid, b* and p are summed together. When the conserved to primitive
inversion P(U) is performed, small errors in the magnetic field translate to large errors in the pressure
and thus internal energy of the fluid. Such errors could come from the difference in magnetic field
that would be computed from the CT scheme which updates T}, and the normal Godunov method
which updates T+ leading to errors in the evolution of T&;’ey) = TH — TLY,. A further problem is
that it is impossible for a conservative numerical scheme to guarantee that the acceleration due to the
Lorentz force is orthogonal to the magnetic field (Toth 2000). If the magnetic field is small enough this
effect is negligible but when o > 1, gas starts to become accelerated along magnetic field lines. The
third problem is that at large enough magnetizations, the equations of MHD are no longer a good
approximation for the plasma flow and it can be shown that the current must be zero or parallel to
the magnetic field. In this limit, known as force-free electrodynamics the plasma momentum can
be effectively ignored. One must then either devise a numerical scheme which is appropriate for
force-free electrodynamics (McKinney 2006, Mahlmann et al. 2021) or find a way to let a regular
GRMHD scheme handle large magnetizations (Parfrey and Tchekhovskoy 2017).

1.2.5 Koral

At this point [ have discussed at length nearly all of the numerical techniques required to understand
the primary tool I use in this thesis, the Koral code which solves the equations of GRRMHD on
a stationary 3D mesh for a static spacetime of an arbitrary, analytical metric. The code was written by
Dr. Aleksander Sadowski. At the time of writing this thesis it is currently being maintained by Dr.
Andrew Chael and contributed to by Prof. Ramesh Narayan. It has received smaller contributions from
a number of other scientists and is used by a small number of groups internationally. I contributed
a number of routines, many of which were adapted from Parfrey and Tchekhovskoy (2017), that allow
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1.2. Numerical methods

the code to handle the highly magnetized environment of a neutron star magnetosphere which I will
discuss in Chapter 4.

The main implementation notes of the code can be found in Sadowski et al. (2013) and Sadowski
et al. (2015). There have been a number of features added including but not limited to photon-counting
Comptonization (Sadowski and Narayan 2015), two-temperature electron and ion heating and cooling
(Sadowski et al. 2016), and the evolution of non-thermal electrons (Chael et al. 2017). I will describe
here the main features relevant to this thesis.

Koral evolves the following vector of conserved quantities, U = (pu, T%;, T';, B?, R, R!;), where
i = 1,2, 3 correspond to the three spatial indices in the chosen coordinate system. The corresponding
primitive vector is P = (p, uint, v*, B, E, vly) where v; = u’/u’ and v, = ul, /ul, are the 3-velocities of
the gas and radiation rest frame, respectively, and E is the radiation energy density in the radiation
rest frame.

The evolution of the gas and radiation fields are given by Eqns. 1.42 and 1.43. To evolve the
equations forward in time a semi-implicit/explicit method is used. The explicit step is comprised
of the advection and geometric source terms while the implicit step takes into account the radiative
source terms, £,/—g¢G,,.

The explicit evolution contains the following steps:

1. The primitives, P, are reconstructed on the cell interfaces using the minmod or MC slope limiters.

2. The left and right biased fluxes and conserved quantities are computed from the reconstructed
primitives.

3. The left and right moving wavespeeds are calculated and the Riemann problem solved using
the HLL Riemann solver to get the intercell flux.

4. The magnetic fluxes are recomputed using the flux-CT method.

5. The CFL condition is used to compute the length of the time step At by searching for the
minimum signal crossing time, Az /a.

6. The conserved quantities are stepped forward in time by summing the fluxes and the geometric
source terms.

7. The cell centered primitives are then recovered using the new conserved quantities via the U(P)
inversion from (Noble et al. 2006). During the inversion, numerical errors are flagged, problem
cells are fixed up, and numerical floors are applied.

The implicit step while simpler is more numerically demanding:

1. The radiative and gas energies are compared to see which fluid is more energetically dominant
in each cell.

2. The less dominant fluid is selected and its primitives iterated over in a 4D Newton-Rhapson
root finder to solve the set of equations either 7("+1) p = (1) w Tt G(VnH)At, or RH(n+1) y =
RHM, — G At where the Jacobian is estimated numerically and the primitives from the
previous step used as the initial guess.
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3. Cells which failed to find a solution are flagged and fixed up using neighboring cells.

The explicit and implicit steps are combined together and performed twice per time step using
a 2nd order Runge-Kutta method for the time evolution.

It is also necessary to set the initial and boundary conditions, but these vary from simulation to
simulation. The boundary conditions are set by extending the grid by a number of couple cells in
each direction corresponding to the order of the spatial reconstruction scheme. These cells, referred to
as ghost cells are not evolved in time but set manually and used to compute the intercell flux at the
boundary.

The grid also varies from simulation to simulation, but all of the simulations presented in this
thesis are run on grids in spherical coordinates, , 8, ¢. As mentioned before, the geometry of the grid
is contained in the metric and so what the code actually works on is a cubical grid with numerical
coordinates, 2!, 72, 23 which are then transformed to 7, , ¢ only when necessary. This allows the grid
to be stretched and warped and a common transformation is to make the grid exponentially spaced in

r with the following transformation,
r=expz! + Ry, (1.79)

where Ry is a parameter which controls how quickly the grid grows with radius. Other such transfor-
mations can be used to concentrate grid cells towards the equatorial plane when studying accretion
disks, or towards the polar region when studying jets for example.

For simulations in which an event horizon is present, it is possible to transform to Kerr-Schild
coordinates. In these coordinates the coordinate singularity at the event horizon is removed, making
it possible to perform simulations around black holes.

In D dimensions, as the resolution (n,,....) increases, the computational time required increases

D+1

proportionally to ng, 5"

. In two or three dimensions, this rapidly becomes to computationally ex-
pensive for a single machine. It becomes necessary to use a supercomputer and run the simulation
on thousands of CPUs where each CPU works on a different section of the grid and information is
exchanged between them using a standard message passing interface (MPI) implementation. All of
the simulations presented in these thesis were run on the Prometheus supercomputer using around

a thousand cores at a time running for three of four days each.

1.3 Accretion disks

At this point, I have discussed the necessary physics and numerical techniques needed to understand
the subsequent chapters in this thesis, so now I can begin to lay out the astrophysical foundations.
I am concerned with the study of accretion disks. In a binary star system, when a low mass star star
begins to overfill its Roche lobe, or a high mass star undergoes significant mass loss through winds,
a significant portion of the matter can be transferred to the second star, of mass M. The low-mass
systems are referred to as a low-mass X-ray binaries (LMXBs) while the high-mass systems are called
high-mass X-ray binaries (HMXBs) due to their emitted spectra peaking in the X-ray regime (Reig
2011).

In LMXBEs, the transferred matter stream has some angular momentum, ¢, and enters an elliptical

orbit before self-interactions from the self-intersecting stream causes the matter to circularize into
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a ring at a radius,
52
T'circ = GM’

Viscous processes cause the ring to spread out into a disk through which gas is transported to

(1.80)

eventually accrete onto the central object. The study of these processes constitute the field of accretion
physics. One should consult Frank et al. (1992); Kato et al. (1998); Lasota (2016) for detailed references
on the subject.

The rate at which the gas moves through the disk is M, and in order for the gas to fall from radius
r1 to radius r, then the entire disk needs to release energy at a rate of [e(r1) — €(r2)] Mc?, where ¢(r)
is the specific energy of an orbit at radius, . If we assume that €(r1) ~ 0 which is true for most
gravitational potentials when r; is large compared to 7o, then the rate of energy release, L, is just
a function of the accretion rate and specific energy at the inner edge of the disk. If we make the naive
assumption that the gravitational potential is Newtonian and the disk ends at 6 4, which is the case
for accretion disks around static black holes, then we have,

L= %M& (1.81)
This factor of 1/12 is called the efficiency, 7, of the disk, and if we assume all of the energy is lost
in the form of radiation (which is not always a good assumption) then this would be the radiative
efficiency. More detailed models can give n = 1/16 for a pseudo-Newtonian potential, and 1 = 0.057
for a relativistic estimate around a non-spinning black hole which can rise all the way up to n ~ 0.4 for
a maximally rotating black hole (Shakura and Sunyaev 1973). Regardless of the specific value used,
we can see that the efficiency of energy extraction for accretion processes around compact objects is
orders of magnitude more efficient that any other process besides matter-antimatter annihilation.
We will assume 1 ~ 0.1, which is a reasonable assumption for the models presented in this thesis.
If we have an accretion disk which is accreting enough matter so that the total rate of energy release
(luminosity) is equal to the Eddington luminosity Lgqq, then we can define an equivalent accretion

rate,

Mgqa = Lpaa . (1.82)

The Eddington accretion rate Mpqgq will prove to be a useful unit of measurement for M although one
must keep in mind that it includes 1 and that many authors use many different values for 7, even if
the particular 7 chosen for the unit does not correspond to the actually 7 corresponding to the model.
In this instance it is useful to differentiate the Mpgqq efficiency as )y and the true or measured efficiency
as 7, with L = nMc2.

1.3.1 Mass in, angular momentum out

The basic mechanic in an accretion disk is the transfer of mass and angular momentum. A simple
argument considers two particles of different masses and angular momenta. It can be shown that
the minimum energy configuration is when a particle with infinitesimal mass and all the angular
momentum is carried to infinity while the rest of the mass settles at the center (Lynden-Bell and
Pringle 1974; Pringle 1981; Kato et al. 1998). In the accretion disk this translates to the flow of angular

momentum outwards and mass inward.
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The physical mechanism responsible for this transfer is viscosity. In a differentially rotating

accretion flow, the vertically integrated viscous stress is given by,

dQ

Thy = v¥r—, 1.83

) 14 Td’r‘ ( )
where

5 = / pd-, (1.84)

TT‘¢ :/ trqg dZ, (185)

where ¢, is the viscous force per unit area excerpted in the ¢ direction at the interface between two
annuli, ¥ or surface density corresponds to the vertically integrated density, and (2 is the angular
velocity. The rate of angular momentum transfer, and thus the timescale for accretion is decided by
the kinematic viscosity, v, where tis ~ R? /v where R is the typical length scale of the accretion disk.
Typical values of the molecular viscosity, vy, ~ 103 cm? s7! give tyis ~ 10! years which exceeds
the age of the universe by far, therefore, some other processes must be responsible for the source
of the viscosity, i.e., turbulence and magnetic fields, and it is necessary to choose a value for v to
construct a full analytical model of an accretion disk. A mechanism which leads to a much larger
value of viscosity was proposed by Shakura and Sunyaev (1973) in which magnetic turbulence leads
to the stress being proportional to the total pressure. Such a relation was shown for the first time in
simulations by Hirose et al. (2009) where turbulence is supplied by the magnetorotational instability
(Balbus and Hawley 1991).

1.3.2 Fundamental models

As mentioned above, a major step forward in accretion disk theory came from Shakura and Sunyaev
(1973) who suggested the shear, ¢, 4, should be proportional to the pressure, t,, = —ap where a < 1.
Typical estimates for o assume a constant value between 0.01 and 0.1, although Penna et al. (2013b)
measured its radial dependence from GRMHD simulations of accretion disks.

With the a-viscosity prescription, a fully analytic model of accretion disks can be constructed with
the following assumptions (Shakura and Sunyaev 1973; Kato et al. 1998):

1. The gravitational field is due only to the central object with self-gravity of the disk being ignored.
2. The disk is steady 0/0t = 0.

3. The disk is axisymmetric, 9/9¢ = 0.

4. The disk is geometrically thin, h/r < 1.

5. The disk is (nearly) Keplerian, v, < v4 = \/G’T/r =rQ.

6. The disk is in vertical hydrostatic equilibrium.

7. The disk is optically thick (and therefore radiatively efficient) in the vertical direction.

8. The viscous stress is proportional to the pressure.
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1.3. Accretion disks

Then, by combining mass conservation, momentum conservation, angular-momentum conservation,
hydrostatic equilibrium, thermal equilibrium, an equation of state, a model for the opacity, and the
viscosity prescription, one can produce a model for the scale height //r, the surface density 3, the
radial velocity v, the central temperature T, and the optical depth 7, as a function of a, M, M. Almost
immediately after Shakura and Sunyaev published their model, a relativistic version was published
by Novikov and Thorne (1973).

These and similar standard disk models have been wildly successful in reproducing the observed
properties of X-ray binaries, however it suffers from a rather catastrophic instability when

M 1 M\
: > — — . .
<MEdd> — 170 (aM®> (150

At these accretion rates, the inner region becomes radiation pressure dominated and the pressure’s

new dependence on temperature becomes unstable. So far no analytical model has been able to resolve
the discrepancy between the overwhelming observational evidence that these disks must exist and
the lack of a stable analytic solution. Numerical simulations are only recently beginning to probe
the parameter space where the instability should manifest itself (Mishra et al. 2016; Sadowski 2016;
Lancova et al. 2019).

1.3.3 The magnetorotational instability

Another major step forward in our understand of accretion processes came from the advent of the
magnetorotational instability (MRI) as the primary mechanism of angular momentum transport in
accretion disks (Balbus and Hawley 1998; Balbus 2009). A common simple (but wrong) interpretation
of the instability involves considering two weakly coupled fluid elements at different radii in the disk.
The element at the lower radius has a larger angular velocity and so it will tend to “pull” on the outer
element transferring its angular momentum and causing it to fall to even lower orbits, increasing the
force and thus the momentum transfer between the two elements, thus leading to instability. The
MRI can only take place when the magnetic field is weak. This is usually measured by 8 = pgas/Pmag
and MHD simulations of MRI have shown that 3 tends to saturate around 10 in the bulk of the disk.
Simulations are necessary to study MRI because it is a turbulent process although growth rates can be
predicted using perturbation analysis. The most important result is that the MRI can develop even
from very weak seed-fields and so it is an excellent candidate to explain angular momentum transfer

in accretion disks.

1.3.4 Super-Eddington accretion and slim disks

Aside from the problem with instability, standard thin disk models are also problematic in that their
underlying assumptions are not valid at all accretion rates. When the accretion rate becomes very small,
M /Mgqq < 1074, the assumption of optical thickness no longer applies. At these accretion rates, the
gas becomes so thin that it can no longer cool efficiently. The disk becomes hot and pressure gradients
cause the disk to expand. Another consequence is that the radial velocity increases and the advection
of thermal energy becomes important. Self-similar models of such flows called advection dominated
accretion flows (ADAFs) where derived by Narayan and Yi (1994). Due to their geometrical thickness,
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low optical depths, and larger inflow velocities, ADAFs are much easier to simulate numerically and
there have been many such publications on the subject, e.g., [gumenshchev et al. (2000, 2003); Narayan
et al. (2012); Sadowski et al. (2016); Chael et al. (2017).

On the other end of the spectrum, for M e Mgqq, so-called super-Eddington accretion disks, the
optical depth becomes so large that the assumption that the viscous heat is radiated locally (Q* = Q™)
no longer applies. One can compute the advection of heat (Shakura and Sunyaev 1973; Kato et al.
1998; Sadowski 2011) '

adv . M P
QY5 (1.87)

and, along with the assumptions of radiation pressure domination, can then write the ratio of advection

to radiative cooling as,
Qadv B M/fes H
Q- 32m?’

which gives the accretion rate at which advection becomes important. Analytical models which

(1.88)

include advection at larger accretion rates constitute the slim disk models (Abramowicz et al. 1988;
Szuszkiewicz 1990; Sadowski 2011). Another often missed model of super-Eddington accretion can be
found near the end of Shakura and Sunyaev (1973). At the radius where the total radiation emitted
becomes super-Eddington called the spherization radius, i.e., L(rsph) = Lgdd, an outflow is launched,
driven by radiation pressure. The accretion rate then decreases linearly with radius so that at the inner
edge of the disk it is back to near Mgaq.

Another phenomenon at large optical depths is that photons generated in the inner parts of the
disk are advected significant distances before they can diffuse out of the flow. A large fraction of these
photons never actually escape the disk before they are accreted onto the central object. The excess
radiation pressure causes these disks to puff up as well and so, for similar reasons as ADAFs, they are
also much easier to simulate (Ohsuga et al. 2002, 2005; Sadowski et al. 2013, 2015; Jiang et al. 2014;
Sadowski and Narayan 2015, 2016). Super-Eddington flows like these are the main subject of this
thesis.

1.4 Accretion onto neutron stars

Up until this point, I have been mostly concerned with the physics of the accretion disk without
regards to the central object, from which all that was necessary to know was the gravitational potential
it was responsible for. I will now turn our attention to the case where the central object is something
specific, which has a profound effect on the structure of the inner disk and on the resulting outflows
and radiation output.

1.4.1 Neutron Stars

I will consider accretion onto neutron stars (NSs). These objects are the end-states of massive stars
whose cores exceed the 1.4, Chandrasekhar mass limit for electron degeneracy pressure-supported
stars but which are not so massive as to go on to form black holes. Neutron stars are supported
by neutron degeneracy pressure and they constitute the densest known non-singular objects in the
universe with typical masses between 1-2 M, and typical radii between 5-15 km. Their central
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densities, while difficult to estimate because their equations of state cannot be precisely constrained,
are often estimated to be several times the nuclear density, ps ~ 2.7 x 101 g cm ™3 (Lattimer 2012). The

surfaces of neutron stars are comprised of ionized iron nuclei reaching densities of up to 101t g cm 3

in the lower surface layer which transitions to a crystal lattice of neutral iron atoms closer to 10 g cm 3
(Chamel and Haensel 2008). This is several orders of magnitude larger than the expected plasma
densities of even highly super-Eddington accretion flows and so the inflowing gas is expected to
slow down and release its kinetic energy through electron ion collisions (Syunyaev and Shakura 1986;
Kluzniak and Wilson 1991; Narayan and Yi 1995; Narayan et al. 1997; Inogamov and Sunyaev 1999;
Sibgatullin and Sunyaev 2000; Popham and Sunyaev 2001; Mukhopadhyay and Fang 2002) while
depositing its angular momentum and spinning up the star (Kluzniak and Wagoner 1985) releasing
large amounts of X-rays and driving gas outflows.

The magnetic fields of neutron stars are expected to be quite high. If we take the Sun (even though
it is too small to end up as a neutron star) which has a typical magnetic field ~ 1 G and magnetic
moment of ~ 1032 G ecm3, and squeeze it down to the radius of a neutron star (conserving the magnetic
moment), we would expect surface magnetic fields around 10'* G. The actual magnetothermal
evolution of neutron stars is quite complex (Pons and Vigano 2019), but the range of magnetic fields
strengths has been inferred from observations to span from 10® to 10'° G.

For accreting neutron stars, the magnetic field can be strong enough to truncate the inner region
of the disk, forcing the gas to flow along magnetic field lines towards the magnetic poles forming
accretion columns. Elsner and Lamb (1977) computed the location at which this occurs, the Alfvén
radius. A basic estimate can be done by assuming the simplest configuration of spherical accretion

free-falling onto a dipolar magnetic field which gives,

M4 Y 4/7 2/7
rg=|——— ~ 3.2 x 10% x m YT M em
A <2GMM2> H3p 17

~ 1.0 x 103 x gl "m0/ =27 (1.89)

where 1 is the neutron star dipole moment, m = M /M, and ri = M / Mggq. At high enough accretion
rates with low enough magnetic moments the field can be entirely buried by the accretion flow, while
at the opposite end, the field can be truncated at thousands of gravitational radii. In Chapter 3, I study
the former case while in Chapter 4, I study the case where the Alfvén radius sits at about 10 7.

1.4.2 Pulsars
X-ray Pulsars

There are about 200 LMXBs observed in the Milky way (Liu et al. 2006, 2007) and while a small
fraction of them have been confirmed to be accreting black holes (Corral-Santana et al. 2016), the
rest are thought to be accreting neutron stars. As discussed above, when the magnetic field of the
neutron far is sufficiently strong, the accretion disk is truncated at the Alfvén radius where it flows
along magnetic field lines forming accretion columns near the magnetic poles. At lower accretion
rates (M < 0.1MEdd), the gas in the accretion column is not expected to be radiatively efficient, so it
flows along the magnetic field lines until it is deposited near the poles, at which case it releases its
thermal and kinetic energy in the form of X-rays. If the dipole field axis is misaligned with the rotation

35



1. INTRODUCTION

axis, then these hot-spots which form at the base of the column will also rotate, resulting in what
are observed as X-ray (accretion powered) pulsars (Caballero and Wilms 2012). The X-ray spectra
produced are very difficult to explain, but generally consist of a power law in the (5 ~ 20) keV range
with an exponential cut off at higher energies (Coburn et al. 2002). The spectra are further complicated
by iron K« fluorescent and cyclotron absorption lines.

If we consider higher accretion rates (0.1 ~ 10 Mggq), the column starts to become optically
thick, and so photons are not able to escape so easily from the base. This forms a radiation shock
which rises above the surface of the neutron star, confined by the magnetic field. Gas sinks slowly
through the dense radiation field before settling on the NS surface, meanwhile photons diffuse out
the side of the column. The classical picture is well described by Basko and Sunyaev (1976). More
recent studies were conducted by Mushtukov et al. (2015a,b); Revnivtsev and Mereghetti (2015),
explaining the complicated pulse profiles expected from the accretion column when the rotation
and magnetic axes are misaligned. The spectra are expected to be dominated by bulk and thermal
Comptonization of bremsstrahlung, cyclotron, and blackbody emission leading to a flat continuum
with a high-energy quasi-exponential cutoff (Becker and Wolff 2007). Single accretion columns in
such sources were investigated using local radiative hydrodynamic simulations by Kawashima et al.
(2016); Kawashima and Ohsuga (2020) who considered both the low and high magnetic field cases by
allowing or restricting the gas motion in the # direction. A radiative shock above the NS surface along
with a large flux of photons escaping out the sides of the column were observed in the low magnetic
field case. In the high magnetic field case, several “chimneys” in the interior of the column appeared
allowing radiation to escape radially as well as tangentially.

At even higher accretion rates (M > 10MEdd) it has been theorized that the accretion column
spreads out to envelop a closed region around the neutron star surface which is filled with radiation.
Most photons which originate from near the NS surface are not observed directly but possibly emitted
thermally from the accretion ‘curtain” leading to smooth pulsed profiles (Mushtukov et al. 2017).

Accretion can deposit angular momentum onto the spinning neutron star if its Alfvén radius is
smaller than its corotation radius (the radius at which Keplerian and NS rotation period are the same).
This spins up the star and is thought to be how millisecond X-ray pulsars, accreting pulsars with
periods less than 0.1 s, are formed (Patruno and Watts 2021). If the pulsar gains too much angular
momentum so that its corotation radius falls below the Alfvén radius then the pulsar enters the
propeller regime (Illarionov and Sunyaev 1975), where the accreting gas is stopped and blown away

and X-ray pulses are no longer produced.

Radio Pulsars

Another type of pulsar is formed when the NS survives the evolution of its binary companions or
when an isolated neutron star maintains a sufficient amount of angular momentum and magnetic field
during its formation. In this case the rapid rotation of the magnetic field powers radio emission which
are observed as radio pulses and the sources are called radio pulsars’ (Beskin et al. 2015). They are
worth mentioning as they are the most numerous source of observed neutron stars, and the first radio
pulsar, which was discovered in 1967 by Jocelyn Bell (Hewish et al. 1968), is widely credited as being

°It may be more correct to refer to these objects as 'rotation-powered pulsars’ as they are also capable of producing
X-rays and gamma rays and some have even been observed to produce no radio emission at all (Kaspi et al. 2006).
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the first observationally confirmed neutron star in existence. However, Shklovsky (1967) correctly
concluded based off observations of Scorpius X-1 that it was powered by an accretion neutron star

mere months before Bell’s observation.

1.43 PULXs

Recently, a new class of objects has been observed which has opened up a whole new set of questions
regarding accretion. For a long time, ultra-luminous X-ray sources (ULXs) had been observed in other
galaxies. These are bright X-ray sources with luminosities greater than 103° erg s~ which are located
outside the central regions of galaxies (thus they are not related to super-massive black holes). As
10%? erg s—! exceeds the Eddington luminosity of a neutron star by a factor of 10, early explanations
attributed the exceptionally large luminosities to sub-Eddington accretion by intermediate mass black
holes with masses ~ 100 M, (Colbert and Mushotzky 1999). A competing explanation claimed that it
was possible for solar mass objects to produce these luminosities from super-Eddington accretion via
the beaming of the radiation from the accretion disk outflows (King et al. 2001).

The question for at least a few of these objects was answered when a ULX was discovered emitting
~ 1 s coherent pulsations (Bachetti et al. 2014), showing that the central accretor had to be a neutron
star accreting above the Eddington limit, Mgaq, and producing luminosities from 10-1000 Lgqq. There
are now a significant number of known pulsating ULXs (PULXs) (Trudolyubov 2008; Bachetti et al.
2014; Motch et al. 2014; Fiirst et al. 2016; Israel et al. 2017a,b; Townsend et al. 2017; Tsygankov et al.
2017; Brightman et al. 2018; Carpano et al. 2018; Doroshenko et al. 2018; Fiirst et al. 2018; Heida et al.
2019; Chandra et al. 2020), and further evidence that many other ULXs may indeed be powered by
neutron stars (Kluzniak and Lasota 2015; King et al. 2017; Wiktorowicz et al. 2017; Pintore et al. 2017).

The question now remains, how are these accreting neutron stars able to produce such large
luminosities. I already discussed super-Eddington accretion, however I neglected to mention that the
expected luminosities rises logarithmically with the accretion rate when the spherization radius is
larger than the ISCO radius (Shakura and Sunyaev 1973),

L ~ Liaq [1 +1n (M/MEdd)] , (1.90)

so that large total luminosities, at least in the classical picture, would be unrealistic.

One answer is to invoke the presence of extremely large magnetic fields (B 2> 10'% G). At these
field strengths electrons are confined to move along magnetic field lines, lowering their scattering
cross sections in the perpendicular direction. This would allow large amounts of radiation to escape
but it should do so nearly isotropically (Eksi et al. 2015; Mushtukov et al. 2015b).

It is also possible to consider a more detailed description of the physics of the accretion column.
Although Basko and Sunyaev (1976) lay the foundation for much of our understanding of accretion
column physics, they do not discuss the photon bubble instability (Arons 1992), which could very
well be very important for understanding the luminosity and variable of bright accretion columns.
In a highly radiative magnetized plasma, if a compression wave is present with some component
transverse to the magnetic field, then it is possible for photons to enter the under-dense regions of the
wave due to the restriction of matter to move along magnetic field lines. This could cause oscillations
in the column (Klein et al. 1996), and the structure could possibly resemble long elongated bubbles
like the fingers observed in Kawashima and Ohsuga (2020). Radiative MHD simulations of photon
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bubbles confirm the linear theory and lead to instability and in static radiative atmospheres (Zhang
et al. 2021). It is uncertain how the results will be affected when considering an accretion column
subject to accreting matter, but it is possible that a large amount of photons may be able to escape
either tangentially or radially, increasing the maximum theoretical luminosity of the source.

An alternative explanation I have already mentioned involves beaming via the outflows from
the super-Eddington disk (King et al. 2001). If the total luminosity of a source is equal to L, but the
radiation only escapes through some fraction, b, of solid angle of the sphere, then an observer will
overestimate the total luminosity as,

Liso = L/b, (1.91)

if they assume the source is isotropic. The lower the beaming factor, b, the more highly concentrated
the emerging radiation is, and the larger the inferred isotropic luminosity, Lis,, will be. Such an effect
has been included into a model (King et al. 2017; King and Lasota 2019, 2020, hereafter referred to as
the KLK model) which also incorporates period, spin-up, and luminosity to predict the magnetic field
strength and degree of beaming. The model assumes the accretion disk is truncated at the Alfvén or
magnetospheric radius, Rjs. At this radius angular momentum is transferred to the star until the spin
period equals the Keplerian period at Rj;. Furthermore, if Ry < Rgpp, then the disk should launch an
outflow which collimates the radiation leading to a beaming factor as a function of the mass accretion
rate,

PO R (1.92)

(M /Mgdqa)?

Such an outflow is necessary for the KLK model to be valid, although one could argue that the
geometry of the accretion column could significantly beam the resulting emission, but this would
come with its own problems. Strong and ultra-fast outflows have been observed in ULXs (Pinto et al.
2016) and even in pulsating ULXs (Kosec et al. 2018), showing that beaming in these objects is a very
real possibility.

The KLK model predicts magnetic fields strengths ranging from 10° to 10'3 G although most of
their results lay between 10'° and 10! G. Lower magnetic fields are also supported by the presence of
cyclotron lines in NGX300 ULX1 (Walton et al. 2018) and M51 ULX-8 (Brightman et al. 2018; Middleton
et al. 2019). Further evidence is provided by additional observations of strong outflows in some
ULXs (Mushtukov et al. 2019), although this seems to be complicated by the implication that strong
outflows/and thus strong beaming should be incompatible with large pulse fractions (Mushtukov
et al. 2021) which would require large opening angles. This is perhaps why in nearly all cases the KLK
model predicts Ry ~ Rgpn, due to the selection effect of only observing pulsations in ULXs with the
lowest possible values of the spherization radius to sufficiently beam the emission but not to obscure
the pulsations.

PULXs and ULXSs in general contain all the right ingredients that make them suitable for studying
using GRRMHD simulations. If they are indeed powered by neutron stars accreting above the
Eddington limit, then the radiation should have a dynamic role in their evolution and the strong
gravity around the neutron star requires the use of general relativity. Both the magnetized and
unmagnetized cases are interesting to study. First, to see what effect the magnetic field has, if any, on
the observable and structural properties of super-Eddington accretion. And second, because there
should be many ULXs powered by neutron stars which are non-pulsating, and may therefore have
very weak magnetic fields.
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Until recently only one such GRRMHD simulation of accretion onto a magnetized neutron star
has been performed (Takahashi and Ohsuga 2017), and one onto a non-magnetized neutron star.
(Takahashi et al. 2018). The magnetized case showed promising results. The measured luminosity
was an order of magnitude larger than the Eddington limit and the radiation was tightly beamed
around the axis. The non-magnetized simulation showed all of the inflowing gas to be blown off the
surface of the neutron star leading to strong outflows which obscured the inner radii of the accretion
flow. Both simulations are important works but they have several shortcomings. The most striking
are the short duration of the simulations, and the lack of proper treatment of the highly magnetized
zones. Another issue is that it is not entirely clear how the inner boundary was treated. I aimed to
overcome these issue in the papers presented in Chapters 3 and 4 in which I performed simulations of

super-Eddington accretion onto a non-magnetized and weakly-magnetized neutron star, respectively.

1.4.4 Transient behavior in accreting neutron stars

Turbulence is by definition chaotic, and since accretion is powered by turbulent viscosity, it must also
contain an element of chaos. This is evident in the variability of their light curves, measurements of
the luminosity as it changes with time, and while it is impossible to account for every minor blip,
some patterns can be found in the chaos and attributed to physical processes.

Probably the simplest of these patterns would be epicyclic oscillations. In Newtonian physics, if
you take a particle on a circular orbit and perturb it in the radial direction, it will enter a different,
slightly elliptical orbit that is very close to the original circular one. At some locations, the object
will be outside its original orbit, and at others it will be inside. An observer orbiting at the original
orbit would see the object appear to oscillate radially about its original position with a period equal
to the orbital period. The same is true if the original displacement is perpendicular to the orbital
plane. These oscillations are referred to as radial and vertical epicycles, and in general relativity, their
frequencies differ from each other, and they usually contribute strong peaks in the periodograms of
accretion disks.

A periodogram (the power spectrum when considering a set of periodic basis functions) measures
the amount of ‘power” or the contribution that an individual frequency provides to the total variability
of the light curve. The most common way to compute a periodogram/power spectrum involves
a discrete Fourier transform, which provides the recipe for reconstructing the original light curve
using a linear combination of sine and cosine waves whose frequencies are integer multiples of each
other.

Accreting neutron stars have been observed to occasionally erupt in thermonuclear (Type I) X-ray
bursts. The accreting gas thermalizes and is compressed to the point where thermonuclear fusion
can occur igniting an eruption which spreads over the surface of the star lasting anywhere from
10-100 seconds (e.g. Bildsten 2000) . These X-ray burst occur repeatedly as fresh fuel is replaced by the
accretion flow. The power spectra of the light curves during these bursts contain peaks referred to
as quasi periodic oscillations (QPOs), as they are not delta functions in frequency space but rather
have some width, meaning they are comprised of a collection of similar frequencies. In other words,
the oscillations are not coherent. QPOs present in X-ray bursts are termed bust oscillations and have
been observed to span frequencies between 300 and 600 Hz (Strohmayer and Bildsten 2006; Watts
2012). Type 1 X-ray bursts can be divided into three phases: rise, peak, and tail. Burst oscillations
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during the rise and peak have been shown to be related to the neutron star spin (Chakrabarty et al.
2003; Strohmayer and Markwardt 2002), but oscillations during the tail phase have yet to be properly
explained.

Type 1 X-ray bursts are associated with large luminosities with some bursts reaching near their
Eddington limits (Lewin et al. 1984; Tawara et al. 1984; Lewin et al. 1993). As was previously discussed,
if the redshifted luminosity exceeds the Eddington limit then the ECS should be present and there
should be a surface where plasma can accumulate. Since this surface is located at a stable equilibrium,
it is reasonable to consider oscillations of an atmosphere at this surface and ask if they are in any
way related to the oscillations observed in the tail phase of Type 1 X-ray bursts. The next chapter is
comprised of a publication (Abarca and KluzZniak 2016) which addresses this very question, taking
into account the effects of radiation drag to see if the lowest order possible mode could explain
these oscillations. The results in Abarca and Kluzniak (2016) set the stage for a series of other works
exploring the oscillations of Eddington supported atmospheres, Bollimpalli and Kluzniak (2017) and
Bollimpalli et al. (2019), the later of which identified a new way to perform simultaneous mass and

radius measurements if such oscillations are present around a neutron star.

1.5 Simulation details

The simulations described in Chapters 3 and Chapters 4 were presented in sufficient detail to be
accepted for publication, but for the sake of clarity in this thesis, I would like to elaborate on some of
the specifics.

1.5.1 Initial conditions

Each simulation required an initial condition. In the Koral simulations, this correspond to setting the
primitives P = (p, uing, v*, BY, E, v%;) to some initial state. In accretion disk simulations, it is common to
initialize the accretion flow with a “Polish donut”, or equilibrium torus. Such models were originally
developed in Warsaw, Poland (Abramowicz et al. 1978; Paczyniski and Wiita 1980) as alternative
models to explain super-Eddington luminosities. The general structure involves an axisymmetric
torus with a non-Keplerian angular momentum profile which is confined by the effective potential
in a frame orbiting with Keplerian angular momentum at ., which describes the location of the
pressure maximum. For all the simulations presented in this thesis, I used the equilibrium torus
solution from Penna et al. (2013a) which has a few advantages over more traditional solutions such as
Fishbone and Moncrief (1976), namely finer control over the initial Bernoulli parameter.

The initial torus has an adiabatic equation of state which means it has a well defined edge. Outside
of the torus, the simulation is set to a low density “background” atmospheric profile with densities
and internal energies several orders of magnitude lower than inside the torus. The temperature of the
background is usually much hotter than the torus and typically decays linearly with radius.

The magnetic field needs to be initialized so that it has zero divergence. This is done by setting the
vector potential in such a way that it gives the desired magnetic field after a numerical curl operator is
applied. For the simulation described in Chapter 3, it is only necessary to add magnetic field lines
to the initial torus. Many configurations are possible. I chose a multi-loop configuration which does

not allow significant magnetic flux to accumulate at the inner boundary for Chapter 3 and a single
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loop configuration in Chapter 4 which allows the disk field to reconnect with the stellar dipole. Once
the field is computed from the vector potential, its magnitude is scaled so that the maximum plasma
B = Pmag/Peas = 20, as MRI does not require a very strong initial magnetic field. The dipole field
for the neutron star described in Chapter 4 was initialized from the relativistic potential described
in Wasserman and Shapiro (1983), but with the outer field lines deformed to warp around the initial
torus.

To initialize the radiation field it is necessary to redistribute pressure between gas and radiation as
the solution from Penna et al. (2013a) is non-radiative. In local thermal equilibrium, the total pressure
is just the sum of the gas and radiation pressures,

kpp
Ptot = Pgas + Prad = "

4
T + 2958

T, (1.93)
my 3

where p is the mean-molecular weight (I assumed pure ionized hydrogen so ;1 = 1/2 for each
simulation described), and ogp is the Stefan-Boltzmann constant. This provides a fourth order
polynomial which can be solved for T', which is then used to compute u;,; and E. The radiation
velocity is then set to the fluid velocity and a low density radiative atmosphere which follows a power

law is initialized outside of the torus.

1.5.2  Force-free flooring scheme for high magnetizations

One consequence of including a stellar magnetic field is that from the beginning the simulation will
be subject to large magnetizations. In Sec. 1.2.4 I explained why this is a problem. Here, I elaborate on
the method I used to overcome this issue. The scheme was introduced in Parfrey and Tchekhovskoy
(2017) and I adapted it to work with radiation.

What is normally done when large magnetizations appear in the simulation is to inject gas so that
the magnetization never rises above a predefined value, usually between 20 and 100. This introduces
a relative floor in the density. The basic idea of the new scheme is to, in a sense, keep track of this
extra gas from the flooring scheme and then to adjust the fluid quantities based on the amount of
extra gas present in a cell. But, instead of using a relative floor on the density which fluctuates based
of the magnitude of the magnetic field, we use a static floor, py which follows a function of radius.
The floor is chosen as a broken power-law so that initially the magnetization has a maximum on the
neutron star surface, usually around o ~ 10%, and then drops with radius to about unity at the break
of the power law. At larger radii, the density floor decays with p; o 776, keeping the magnetization
constant.

To keep track of the contribution of the floor to the total density, an additional scalar field, F is
evolved with the simulation, according to,

Vu(Fput) = 0. (1.94)

The scalar field F represents the fraction of the density which is due to the density floor, initially F is
set to 0 inside the torus and 1 outside. As F is advected with the density it is also used to adjust the
density floor, py. When p < py, F — (ps — p)/ps and p — py, so p is brought up to the value of the
density floor, and F keeps track of the amount of density added. When Fp > p¢, p = p — F(p — py)
and F — py/p, so that if the density contribution from the floor is too large it can be removed and 7
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lowered appropriately. In this way the total density can be adjusted to make the GRRMHD equations
behave while still keeping track of the “true” density.

The quantity F can then be used to adjust the other fluid quantities which are affected by large
magnetization. Analogous to py a ceiling on the internal energy is also used wu;y; ¢+ which has nearly
the same radial dependence as py. If uing > Uint ¢ then wing — wine s + (1 — F)(Uint — Uint,£). Since the
internal energy cannot be split in the same way as density, it is linearly interpolated between its value
from the GRRMHD equations when F ~ 0 and w;n f when F ~ 1.

Finally, the fluid velocity is adjusted by reducing its component parallel to the magnetic field in the
frame of the stationary observer, u*b, ;. At first glance, this seems strange because the orthogonality
of the 4-velocity and 4-magnetic field is part of the definition of *. However, b, even though
it is defined in the lab frame, represents the magnetic field seen by the fluid. This can be seen by
transforming Eqn. 1.24 to the orthonormal fluid frame, where one finds b’ = B'. One can easily recover
the corresponding b* seen by an observer with four-velocity v’ as b'# = —«[F"*“u;,, which is evident

1

when u/* = u#. Then to get the field as observed by the stationary observer'’ with four-velocity

n* = (n',0,0,0) we can simply do
b = =y = (un )b — (V) (1.95)

From this point, it can be seen that u* and bt are not orthogonal and u,, by = btn,u. This may seem
like a lot of machinery for what, at least in the Schwarzschild geometry, is simply proportional to
Btu; as expected, but for more complicated geometries, especially for metrics with off-diagonal terms,
mixing of the coordinates between frames makes the analysis much less straightforward and the
above formalism becomes much more useful. In this thesis, I stick to the Schwarzschild geometry but
extending the method to Kerr for example should not be difficult.

To actually reduce k = u,bs, we split the four-velocity into parallel and orthogonal components,

B kbg 1
bs
uf) =t — k:b—z (1.97)

From this, one can easily see that u* = uﬁ + uff, uﬁ uy, = 0,and u? = uﬁ + u2. In the flooring

scheme, we use the value F to transform u# — A(u/| + F uﬁ ) where A = \/ —1/(u? +F 2uﬁ) is the
normalization factor of the new four-velocity.

This takes inspiration from force-free electrodynamics (FFE) in which the important dynamic
objects are the electric and magnetic fields. In FFE, the plasma momentum is unimportant, and so in
this flooring scheme, we only preserve the orthogonal component of the velocity which is necessary to
evolve the magnetic field in the GRMHD equations. This provides stability to the code as the parallel
component tends to grow artificially large at high magnetizations.

The above described scheme is applied after every explicit step after the conserved-to-primitive

inversion occurs.

The magnetic field as observed by the stationary observer is defined in the lab-frame so it does not receive a head-piece
(hat, tilde, bar, etc.). Instead I denote the components of the 4-vector b4, where s is not meant to be thought of as an index
but merely a label.
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It is also possible to gradually turn off the flooring scheme at larger radii by multiplying all
instances of F by a smooth function of » which goes to zero at some distance away from the star. In

this thesis I set the maximum radius of the flooring scheme to be r = 207,

1.5.3 Boundary conditions

The last numerical concept to elaborate on before moving to the main results of the thesis are the
boundary conditions. In the absence of infinite grids, boundary conditions are necessary for all
grid-based numerical schemes. All of the simulations presented in this thesis use spherical coordinate
systems which means that we have six boundary conditions to consider, a lower and upper boundary
for each coordinate. All but the lower radial boundary condition are the same for every simulation
described here.

First, I will mention the azimuthal boundary conditions as they are the simplest. In 2D axisymmetry,
we have only one grid cell in the ¢ direction and so we simply copy the entire simulation into the
ghost cells in either direction.

Next are the upper and lower boundary conditions on the polar angle. In 2D axisymmetry it
is impossible for any vector to have a nonzero § component at ¢ = 0 and § = w. Furthermore, the
factor of sin(#) originating from the metric but used in many different places in the code can causes
numerical problems as sin(f) — 0 near the poles. For this reason, the first two cells in the domain
around the poles are overwritten. This makes the boundary condition largely irrelevant. All of the
scalar quantities and r and ¢ components of the vector quantities are copied from the 3rd closest cell
in the domain and the # components are interpolated to zero.

The upper and lower radial boundary conditions are the most complicated. First we discuss the
outer radial boundary condition. The idea here is for gas, radiation, and magnetic field to flow out of
the simulation. This is done by extrapolating all of the scalar quantities and radial components of the
vector quantities such that 72 P! is conserved across the boundary where P is the primitive quantity
of interest. The polar and azimuthal quantities are extrapolated such that 7P is conserved. If either
the gas or radiation radial velocity are negative (inflowing), then they are set to zero in the ghost cells.

Inner radial boundary for the non-magnetized neutron star

The inner radial boundary condition is the most important for these simulations as we are studying
accretion onto compact objects, this is where the properties of those compact objects must be encoded.
Chapter 3 concerns accretion onto a black hole and a non-magnetized neutron star. In the black hole
case, the boundary condition is simple. As long as there are enough cells below the event horizon (5),
you can put almost anything as the inner boundary and nothing will escape the black hole. This is
purely a consequence of the geometry of space-time. One has to keep in mind that it is not possible to
use the Schwarzschild metric here, it is necessary to change to horizon-penetrating coordinates such
as Kerr-Schild coordinates.

For the non-magnetized neutron star we model the hard-surface created by the crystal lattice as
a reflective boundary. From a numerical point of view, the idea is for the radial fluxes excluding
radial momentum to be zero at the inner boundary. This is usually achieved by copying all quantities
symmetrically across the boundary, and multiplying the radial velocity by negative one. This causes
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the reconstructed left and right radial fluxes of mass and energy at the boundary to be antisymmetric
about zero so that the Riemann solver produces zero flux for these quantities. Momentum flux is
not zero because momentum needs to be transferred from the gas to the star. Because the grid used
in Chapter 3 is not constant in radius, I extrapolated the radial velocity so that linear interpolation
between the cell center would produce zero at the boundary. Otherwise the fluxes would not line up
properly and there was leakage of gas into the domain.

In order to make the stellar surface “sticky” i.e., to give it some friction so that the gas does not
just slide along the surface indefinitely, I simply set the tangential velocities to zero. This allows
some angular momentum to flow through the boundary, but it is not really physical as the rate of
momentum transfer is related to not only the difference in momentum flux between cells, but also
to numerical properties such as the resolution, the reconstruction scheme, and the Riemann solver.
I believe however, that this is still the most reasonable choice, as it would be very difficult to predict the
actual rate of angular momentum transfer without detailed knowledge of the physics of the neutron
star crust and its interaction with accreting plasma. The results of this simulation are described in
detail in Chapter 3.

Inner radial boundary for the magnetized neutron star

In Chapter 4, I move onto magnetized neutron stars, and this requires me to include some more
physics into the boundary condition. For gas quantities, I use the same inner boundary condition
as described in Parfrey and Tchekhovskoy (2017), which allows gas to accrete smoothly through the
inner boundary while sliding along magnetic field lines.

The main idea is to extrapolate quantities smoothly into the ghost cells using slope-limited linear
extrapolation in cells where gas is accreting onto the star, and to set the gas quantities to their force-free
background states otherwise.

For accreting cells (defined by cells with negative v" and F < 0.5), the gas density and internal
energy are directly extrapolated, but again the velocity is treated differently. However, before the
velocity can be extrapolated, it is necessary to set the magnetic field in the ghost cells. This is done
by first setting the radial component to the dipole solution (Wasserman and Shapiro 1983) and then
smoothly extrapolating the tangential components. This allows field lines to smoothly pierce the
stellar surface but also to return to the equilibrium configuration if the whole field is deformed (such
as by accreting gas). It is also necessary to set the tangential electromotive forces used in the flux-CT
algorithm to prevent field lines from sliding along the surface.

Again, the component of the velocity parallel to the magnetic field as viewed by the stationary
observer!'!, u”b, , is measured and this quantity extrapolated into the boundary, and the velocity
reconstructed using the value of the magnetic field in the ghost cells.

In the absence of radiation, the gas would accrete onto the neutron star without experiencing any
effects from the surface as seen in Parfrey and Tchekhovskoy (2017). In order to restore the surface
I implement what I call an “energy-reflective” boundary. First I measure the inflowing flux of kinetic,
thermal, and radiative energy, then I return a fraction of that energy as outflowing radiation. The

point is to mimic the effect of gas hitting the surface and releasing its energy as radiation. Because it is

"n Parfrey and Tchekhovskoy (2017) the magnetic field of the corotating observer is used for the extrapolation, but as
our neutron stars are not rotating, the corotating and stationary observer are the same.
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Name | Albedo (3)

Accr 0
Enre060 0.6
Enre065 0.65
Enre070 0.7

Enre075 0.75
Enre085 0.85
Enre095 0.95
Enrel00 1

Table 1.1: Simulation name and corresponding albedo.

unknown exactly how much energy is reflected and how much is buried underneath the star by the
accretion flow, I study a range of this reflective fraction, or albedo from 0% to 100%.
I will conclude this introduction by presenting the results of a boundary condition study which

allow me to be comfortable with my choice of boundary condition in Chapter 4.

1.5.4 Results of the boundary condition study

In order to study the effects of the albedo, 3, I run a series of eight simulations with albedos described
in Table 1.1.

All the runs are initialized using the setup described in Section 1.5.1. The initial torus is set so that
the accretion rate is approximately, M =~ 20Mgqq and the initial stellar dipole magnetic field set to
have a maximum value on the stellar surface of By.x = 2 x 1019 G. The simulations are then run for
tmax = 40000,.

Accretion disk and column structure

Time averages from ¢ = 20 000t, — 40 000 ¢, are used for most of the analysis. Colormaps of the gas
rest mass and radiation energy densities are shown in Fig. 1.1. I will start by describing run Accr, the
zero albedo set-up.

As the simulation starts, MRI builds up in the initial torus causing an accretion disk to form and
matter to flow towards the star. As the gas flows inwards, it compresses and reconnects with field
lines from the neutron star until it reaches the point where magnetic pressure from the dipole field
matches the inflowing ram pressure. At this location, called the Alfvén surface which is located at
a radius of r, =~ 107, the gas is forced to slide along magnetic field lines, forming accretion columns
which deposit the inflowing matter near the poles of the star. In the case of Accr, the gas simply flows
into the star without interruption. This is evident from Fig. 1.1 since no shocks are visible at the base
of the accretion column. There is a little bit of radiation which is able to diffuse out the sides of the
accretion column and escape along the poles, which are completely devoid of gas.

As the albedo increases, the gas experiences a shock at the base of the accretion column as the
inflowing gas is slowed down by outflowing radiation. The height of this shock increases with albedo.
It is also possible to notice an increasing amount of radiation which is escaping along the poles. This is
due to the increasing shock height. As the gas spends more time sinking through the dense radiation
field, more photons are able to diffuse through the accretion column and escape along the poles.
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Figure 1.1: Colormaps of radiative energy density and rest mass density for the eight simulations

in the boundary condition study. The colormaps are produced from time-averaged data spanning
a length of 20000 ¢,. Also plotted are poloidal magnetic field lines.
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Figure 1.2: Quantities along magnetic fields are shown in the four right panels. The quantities are
interpolated onto paths which follow magnetic field lines and then averaged together. The paths are
shown in the eight panels on the left. From upper-left to lower-right the four quantities plotted are the
gas density, radiation energy density, the component to of four-velocity along the magnetic field line,
the component of the radiative flux along the magnetic field line.

Somewhere between an albedo of 85% and 95%, the radiative shock propagates all the way into
the disk and a quasi-spherical atmosphere starts to form, somewhat similar to the simulation I will
present in Chapter 3, although the magnetic field keeps the gas from filling in the polar regions.

To get a better understanding of the structure of the accretion columns, I plot quantities along
magnetic field lines shown in Fig. 1.2. Starting at the surface of the star, for each cell in the 6 direction
which is inside the column, I integrate a path which follows the magnetic field. I then interpolate
relevant scalar quantities onto the paths and then average them together. The paths for each simulation
are shown in the eight left panels of Fig. 1.2. Units of 11, are marked along the paths and those points
correspond to the tick marks for the horizontal axes of the right four panels. I plot four quantities
against s, the distance along the path from the surface of the star, (p), <E), (uF'bs ) p, and (FFbsp) . The
gas and radiation energy densities are computed via direct average, the velocity along the field line is
computed with a density-weighted average, and the radiative flux along the field line is computed
with a radiation-energy-density-weighted average.

The plot of density in Fig. 1.2 for Accr starts with an initial decrease at the top of the column
as the gas begins to accelerate towards the star, and then gently rises again as it is compressed by
the magnetic field. There is no indication of an interaction with the inner boundary. As the albedo
increases the behavior is similar except for a sharp rise in density near the surface of the star. This
corresponds to the radiative shock caused by gas hitting the surface of the star and slowing down.
The shock rises with albedo and reaches farther up the column, which was also visible in Fig. 1.1. The
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Figure 1.3: Colormap showing the radial mass flux density integrated into the poloidal plane. Blue
colors show outward moving gas, and red colors show inflowing gas. The solid lines represent
the photosphere as integrated radially from the outer boundary. The dashed lines represent the
photosphere as integrated along ¢ from the pole. The dashed red line is the zero Bernoulli surface.

slight dips in density at the surface for the two highest albedo runs are numerical in nature but they
do not affect the results significantly.

The same trend is also visible in the plots of radiation energy density, this is just a consequence of
local thermal equilibrium as the accretion columns are optically thick.

The shock is also visible in the plot of the component of velocity along the magnetic field line. For
Accr, the velocity increases smoothly towards surface of the neutron star. As albedo increases, the
velocity as the surface is pushed towards zero and the rest of the column has to transition between
free-fall to the shock region.

In general, the shocks present themselves as being rather smooth. One thing to keep in mind is
that I am showing the data from time-averages. In actuality, the accretion rate is quite variable causing
the extent of the shock to move up and down so it gets smeared out in the time-average.

The last panel shows the component of the radiative flux along the magnetic field. It is harder to
make sense of this plot. Initially we can see the flux rise near the surface for lower albedos, but at
some point it begins to drop again. This is because there is a significant amount of outgoing flux at
higher albedos which cancels out with the inflowing flux.

Outflows

As discussed previously, outflows play a large role in super-Eddington accretion and the appearance
of its emerging radiation. I pick three simulations (3 = 0,0.75, 1) and plot the azimuthally integrated
mass flux which is shown in Fig. 1.3. The blue part of the colormap shows outflowing gas and the
red shows inflowing gas. Also plotted are three surfaces. The two black lines correspond to the
photosphere as measured radially (solid) or along ¢ from the axis (dashed). These surfaces give us
a sense of how the radiation should be collimated. All the outflowing radiation which escapes the gas
should be collimated above the dashed line, however, not all of that radiation is expected to reach
the observer. Some of it will be absorbed by the very thin outflowing gas. All the radiation above the
solid black line however should manage to reach the observer. Also shown is the zero specific energy
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1.5. Simulation details
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Figure 1.4: Luminosity as a function of radius.

surface, or the surface where the relativistic Bernoulli parameter is equal to zero. How these surfaces
relate to the luminosity is explained in more detail in Chapter 4.

The two lower albedo runs look similar. There is a bit more gas flux between the two photospheres
for the 75% albedo run but it does not appear that there would be a significant difference in collimation.
The 100% run is drastically different. Very little gas can escape through the boundary condition and so
when it hits the NS surface it produces lots of photons which drive a much stronger outflow. There is
a noticeable difference in the volume confined by the photosphere and so it is expected that the 100%
albedo simulation would collimate the outflowing radiation more effectively.

1.5.5 Radiative output

The question that is most important to answer is can weakly magnetized neutron stars produce
luminosities comparable to those observed in pulsating ULXs. In order to answer this question,
it is necessary to know the effect the boundary condition has on the radiative output. Once this
information is known, it is possible to chose one albedo to study in more detail, which is what I have
presented in Chapter 4.

The first quantity to measure is the total radiative output or luminosity of the source. This is not
so interesting from an observational point of view but more so for understanding the physics of the
problem as it depends not only on how much radiation is generated from the accretion flow, but
also, how much can escape to infinity. This is very difficult to measure as these simulations are only
performed for the inner most part of the system. If I had infinite computing power I could probably
simulate nearly the entire system, then a measure of the luminosity would be trivial. Instead, I have to
make some approximations.

As the simulation begins, the accretion disk is formed near the center and with time it grows
outwards as the simulation reaches its quasi-steady or equilibrium state. This is closely related to
inflow equilibrium in which the time-averaged plot of M () becomes constant. The speed at which the
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disk grows is roughly proportional to the viscous time which increases exponentially with radius, so
usually I am only able to simulate the disk out to between 50 —100 r, reliably, so the first approximation

is that the majority of the radiation is produced from this range.

The collimation of the radiation is achieved through the outflows, so it is also necessary to ensure
that they are converged to their steady state solution as well. Since the outflowing gas has much
higher velocities, the outflows are usually trustworthy throughout most of the domain as long as they

can be traced back to portions of the disk which are converged.

The last approximation involves the decision of which photons will reach the observer or not.
There are several ways to approach the problem and I discuss them in detail in Chapter 4. The method
I use here corresponds to integrating the radiative flux over values of # where the optical depth
measured radially to the outer edge of the simulation is less than one. This corresponds to all of the

flux which is traveling above the solid black lines in Fig. 1.3.

The result of this measurement is shown in Fig. 1.4. In steady state and in the absence of gas (such
as the exterior of a star) the luminosity should be constant with radius. Its obvious from the figure
that this is not the case. There are two main contributions to spatial variations here. One is that the
outflows are absorbing and emitting radiation so they can decrease and increase the luminosity with
radius. The second, is that the surface defining the photosphere has some curvature so that radiation
is either included or excluded from the total luminosity. If I were to instead integrate the flux around

the poles up to an angle to 10°, the luminosity plots would appear nearly flat.

From Fig. 1.4 we can see that the luminosity varies the most near stellar surface. This makes sense
because the only differences between the simulations are from the boundary conditions, so farther
away from the center those are masked to a certain extent by the disk contribution. All the plots
show a peak around r = 507,. It is at this point that the outflows stop emitting radiation and start
absorbing radiation so the luminosity decreases until around r = 250 r,. Here the outflows start to
become optically thin and so photons which were earlier excluded are now included in the luminosity.
At r = 50074, which is the largest radius I include, the luminosities vary between 1.75 Lgqq and
2.5 Lyqq. This is encouraging that difference in luminosities is less than a factor of two and likely

means any boundary condition should get close to correct answer.

The last quantity to measure is much simpler to compute, and arguably much simpler to under-
stand from an observational perspective and that is the inferred isotropic luminosity, Lis,. As explained
in Section 1.4.3, Lis, is the luminosity inferred from a flux measurement by assuming that the source
emits isotropically. If the source is not isotropic then Lis, overestimates the true luminosity, L, by
a factor for 1/b where b is the beaming factor. To measure Lis, we simply have to multiply the observed
flux by the surface area of the sphere with radius corresponding to the location the measurement is
occurring. In real observations, this corresponds to the distance between the source and the Earth, but

for simulations we can perform this measurement at any radius.

I perform this measurement at » = 500 r, and the result as a function of the observation angle is
shown in Fig. 1.5. We can see that almost all of the emission is concentrated between 0 and 20°. The
largest isotropic luminosities are seen when viewing the source along the pole. The peak luminosity is
about 140 Lrqq which is many times the measured value of L implying very strong beaming. This is
encouraging as these luminosities are consistent with those observed in ULXs. These results show that
it is likely possible for weakly magnetized NSs to power ULXs even when the interaction between the
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Figure 1.5: Inferred isotropic flux as a function of viewing angle measuring at radius » = 500 r,. The
plot is presented in a polar fashion so that the polar coordinate present the viewing angle and the
radial coordinate represents the luminosity.

gas and the neutron star surface is unknown. For this reason we pick an albedo of 5 = 0.75 to study

in more detail in Chapter 4.

1.6 Summary

Thus far, in Section 1.1 I laid the foundation to understand the physics necessary to study accreting
neutron stars, namely GRRMHD. In addition, I described a special case in which radiation and general
relativity give an interesting result not possible in the Newtonian formulation, the existence of the
Eddington capture sphere. In Section 1.2, I presented an overview of the numerical techniques used
in the rest of the thesis in order to solve the equations of GRRMHD on a computer. I also described
some of the specifics of the GRRMHD code Koral, the code used to run the simulations in this
work. Later, in Section 1.3, I moved the discussion to astrophysics. Here I described both classical
and contemporary models of accretion disks including super-Eddington accretion. Accretion disks
can occur around a number of objects, such as black holes and neutron stars in X-ray binaries. In
Section 1.4 I focused mainly on accreting neutron stars and ULXs, the main astrophysical object I am
concerned about. In Section 1.5, I described the set-up of the simulations in a level of detail which is
usually not present in publications so that the reader could have a deeper understanding of what was
done to obtain the results. I also presented some unpublished results which help to provide context
for the simulation described in Chapter 4.

The three remaining chapters consist of three publications, the first of which describes an analytical
study and the last two involve GRRMHD simulations. The analytical study in Chapter 2 was included
because it described an interesting phenomenon which can only be present around a near-Eddington
luminosity neutron star. Abarca and Kluzniak (2016) was written with Type I X-ray bursts in mind but
it is not unreasonable to consider the situation could be applied to ULXs with neutron star accretors.
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The subject of the paper considered oscillations of an atmosphere around a neutron star which is
supported against gravity by radiation, completely disconnected from the stellar surface. The main
result of the paper showed that the lowest order mode was overdamped by radiation drag. While we
were unable to show that QPOs in Type-1 X-ray bursts could be explained by these oscillations, we set
the stage for additional publications on the topic which produced interesting results.

The second paper, Abarca et al. (2018) included in Chapter 3, involves simulations of super-
Eddington accretion onto a black hole and a non-magnetized neutron star. While much of the debate
around pulsating ULXs relates to the strength of the magnetic field, the goal of this publication was to
investigate the possibility of having no magnetic field. There was a hard surface implemented for the
neutron star case, however. What the simulations showed was that gas collected on the surface of
the neutron star and filled the domain so that any radiation released by the accretion disk hitting the
surface was trapped. The radiation which was able to escape was nearly isotropic and around one
Eddington luminosity which does not resemble a ULX in any sense, but possibly a super soft source.
Including this paper makes it possible to disentangle the effects of including a magnetic field and
a hard-surface into an accreting NS simulation.

The third and last paper is probably the most interesting result, the most difficult to obtain, and
represents the culmination of my PhD studies. In Abarca et al. (2021) I implemented the technique
described in Parfrey and Tchekhovskoy (2017) to work in GRRMHD so that we could perform
simulations of super-Eddington accretion onto magnetized neutron stars. The resulting simulations
showed that accreting weakly-magnetized (~ 101 G) neutron stars could produce highly beamed

010 erg s~!. And while it does not

emission which would appear to the observer to be in excess of 1
answer the question of exactly how PULXs operate, it clearly supports the beaming scenario and

shows that super-high magnetic fields are not necessary for producing large luminosities.
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2 Paper 1: Radial oscillations of a
radiation-supported levitating shell in

Eddington luminosity neutron stars

In this paper (Abarca and Kluzniak 2016), I extended the results in Wielgus et al. (2015) to include
a first order, linear perturbation analysis to study oscillations about the equilibrium configuration.
This paper serves as an illustration of the necessity of including radiation in GRHD to properly
encompass the physics around accreting neutron stars and so it helps to set the stage for the next two
chapters. They main result I found was that the eigenfunction of the lowest frequency corresponded
to a radial, incompressible mode. The frequency of these oscillations is consistent with the 300-600 Hz
QPOs seen in several X-ray bursting low-mas X-ray binaries (Strohmayer et al. 1996). However, when
the full effects of radiation drag were included in the calculation, the oscillations were found to be
over-damped. Nevertheless, this work laid the foundation for future studies which considered higher
order modes in both in Newtownian gravity (Bollimpalli and Kluzniak 2017) and full radiative GRHD
(Bollimpalli et al. 2019) which showed that the underdamped second and third order modes could

provide simultaneous mass and radius measurements for neutron stars.
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ABSTRACT

In general relativity, it has been shown that radiation-supported atmospheres exist well outside
the surface of a radiating spherical body close to a radius where the gravitational and radiative
forces balance each other. We calculate the frequency of oscillation of the incompressible
radial mode of such a thin atmospheric shell and show that in the optically thin case, this
particular mode is overdamped by radiation drag.

Key words: stars: atmospheres — stars: neutron — X-rays: bursts.

1 INTRODUCTION

Neutron stars have been shown to erupt in thermonuclear (Type I)
X-ray bursts. In addition, pulsations of an ultraluminous X-ray
source have been explained by accretion onto a neutron star
(Bachetti et al. 2014). At such large (~100 times Eddington) lu-
minosities, it is easy to imagine that neutron star systems may
produce luminosities above the Eddington limit.

In Newtonian physics, the radiative force is proportional to the
flux, which falls off as 1/72 for a spherically symmetric source.
If the radiative force exceeds the gravitational force at one radius,
then it will exceed it at all radii. In general relativity, the radiative
force can be shown to increase faster than the gravitational force
at smaller radii (Phinney 1987; Abramowicz, Ellis & Lanza 1990).
It turns out that for a given luminosity, there exists a radius in the
Schwarzschild metric where the gravitational and radiative forces
are equal, forming an imaginary, spherically symmetric surface
referred to as the Eddington Capture Sphere (ECS; Stahl et al. 2012;
Wielgus et al. 2012) onto which particles are captured by radiation
drag (Bini, Jantzen & Stella 2009; Oh, Kim & Lee 2010). Wielgus
et al. (2015) have shown that it is possible to create an optically
thin atmosphere at this radius which levitates above the surface of
the star, supported entirely by radiation. Wielgus et al. (2016) have
extended the analysis to include optically thick atmospheres as well.

We are interested if oscillations of these atmospheres can ex-
plain the still unresolved problem of the source of quasi-periodic
oscillations (QPOs), the transient peaks observed in the power spec-
trum of highly compact sources (Remillard & McClintock 2006),
including neutron stars (van der Klis 2006). Specifically in X-ray
bursting neutron stars, there have been observations of hectoHertz
QPOs; Strohmayer (2001) report on several QPOs from X-ray bursts
from low-mass X-ray binaries all with frequencies between 300 and
600 Hz. Moreover, most sources show an increase of frequency with

* E-mail: dabarca@camk.edu.pl (DA); wlodek @camk.edu.pl (WK)

© 2016 The Authors

time during the decay phase of the X-ray burst (Strohmayer 2001;
Strohmayer & Bildsten 2006).

We investigate the possibility of oscillations of atmospheres
around the ECS which could possibly provide an explanation for
X-ray burst hectoHertz QPOs. We begin by finding an incompress-
ible radial oscillation mode and calculating its oscillation frequency.
We then compute the effects of radiation drag and discuss the via-
bility of such a mode as a model of a QPO.

2 EIGENMODE OF AN INCOMPRESSIBLE
THIN SHELL

First we demonstrate the equations that are used to construct the
atmospheres from Wielgus et al. (2015). This is essentially the
relativistic equation for hydrostatic equilibrium for an optically
thin fluid subject to the radiative force from a spherical source. We
also explicitly include the derivation of the ECS from Stahl et al.
(2012), because the equations involved are also used to calculate
the frequency of oscillations of a thin shell about the ECS, as well
as the contribution of radiation drag.

2.1 Relativistic hydrostatic equilibrium
For this relativistic calculation, we use the Schwarzschild metric,
ds? = —B(@r)dr + B(r)"'dr + r?d$2?, (1)

where B(r) = 1 — 2r,/r for r, = GM/c*. We find it convenient to
use units where G = ¢ = 1.

Let us consider the equation for the conservation of stress-energy
given by

v, T" =0, )

where 7" is the stress-energy tensor for a perfect fluid given by,
™ =@+ p + uwu'u’ + pgh’, for pressure, p, rest mass density,
p, and internal energy density, u. We can project the conservation
equation on to the space orthogonal to the four-velocity using the
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projection tensor, A" = u'u” + g¥, to get the relativistic Euler
equation,

h*'V, p

u"vyu" + —
pt+potu

=f" 3)
where we have also added a four-force, f*, which corresponds to
the radiation force due to Thomson scattering with cross-section, o,
in an optically thin fluid around a luminous star. As in Wielgus et al.
(2015), we assume that the fluid is at a sufficiently low temperature
such that p > u + p. This allows us to write the four-force in terms
of the radiative flux, F*, as

fr=Zre )
m
Here, m is the proton mass.

One can construct an atmosphere with its pressure maximum
located at, ry, the radius of the ECS. These atmospheres obey the
equation of hydrostatic equilibrium which can be calculated by
substituting u* = u'(1, 0, 0, 0) into the relativistic Euler equation,
which gives

10p M 17
;E—‘W<ﬁ‘ﬁ)~ )

2.2 Derivation of the equilibrium surface

Let us now demonstrate a quick derivation of, ry, the radius
of the ECS. See Stahl et al. (2012, 2013), Phinney (1987) and
Abramowicz et al. (1990) for original work on the ECS. We start
with the expression in parentheses in equation (5), which we will
eventually set to zero.

For convenience, we name it F(r, 0) = 1/r> — f” /M, the reason
for which will be explained in the next section. In terms of the flux,
F’ we have

o

fr="F ©)
m

Expressions for the flux can be found in Stahl et al. (2013). For
a stationary particle, we have

Fr=T"u,. (7

There T" is the rt component of the radiation stress-energy tensor,
T, outside a luminous star, first derived in Abramowicz et al.
(1990). We have

T" = nl sin” a, ®)
for intensity, /, and viewing angle, «, defined as

R JT=2M]r

o = arcsin — ,
r J/1—2M/R
where R is the radius of the star.
We can write the intensity in terms of the luminosity at infinity,
Lo,

C)]

Ly, 1-2M/R
T 4mR2 (1 —2M/r)?’

(10)

Putting all of this back into the expression for the acceleration
and using the usual expression for the Eddington luminosity, Lggq =
4ntMm /o, we get

Lo M

= L=t Y
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Figure 1. Plots of —F(r, 0) for various values of A shown in the legend. The
location where F(r, 0) = 0 shows the radius of the ECS. —F(r, 0) shows
the forces acting on a stationary fluid, and so one can see how atmospheres
can be constructed around the ECS.
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Figure 2. We have plotted r as a function of A. To illustrate the sensitivity
of o to A, we have plotted against two different axis scales. The upper is A
and the lower shows log (1 — A).

For brevity we define, A = L, /Lgqq. We can write down the equation
for F(r, 0) for a stationary fluid,

;@ngo_ (12)

A
V1 —=2M /r) '
Plots of F(r, 0) for different A are shown in Fig. 1. We note the
location of the ECS to be where F(ry, 0) = 0, this gives

2M
T 1=a2
It is important to note that r; is extremely sensitive to A as A — 1.
This is further illustrated in Fig. 2.

13)

ro

2.3 Atmospheric solution

The equation for hydrostatic equilibrium, equation (5) was solved
in Wielgus et al. (2015), who took an optically thin fluid (again,
at a sufficiently low temperature, such that p > p + u), and de-
rived atmospheric solutions with their pressure maximum located at
radius rp. They have provided a set of polytropic atmosphere
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solutions with polytropic index, I", given by

p(r) = po [In(1 = 2M/r)~ % — (1 —2M /r)y~ 2 4 2] /77

(14)

Such an atmospheric shell is entirely supported by radiation and
there are regions between the atmosphere and the surface of the star
with no gas at all.

3 RADIAL EIGENMODE OF AN
INCOMPRESSIBLE THIN SHELL

Now we turn from hydrostatic equilibrium to the time-dependent
equation, the relativistic Euler equation, with which we will apply
perturbations to derive the oscillation frequency. While we are in the
relativistic regime of strong gravity, we will make the assumption
that our velocities are small and so non-relativistic. This allows us
to write the four velocity, u*, to first order in «" = dr/dz, or in
v =dr/dr.

. 1
uh = (u’, u’ s 0, 0) = l/lt(l, v, 0, 0) ~ W(l, v, 0, 0)
1s)
This allows us to simplify equation (3) to get,
d 1 op dp 1 fr
T _ rr r- - M= =L
a” +p(g ar+” dr) (r2 M
=—-MF(r,u"), (16)

We have combined the two non-fluid forces into one expression, F,
which is in general a function of » and u”. We will demonstrate that
JF can be divided into the sum of two terms, one of which is only
a function of r, the other a function of both » and «". The former
corresponds to the radiation force, and the latter to radiation drag,
both of which will play an important role in our analysis.

We let equation (5) serve as the background over which we con-
sider spherically symmetric radial perturbations. In this work, we
will consider an incompressible mode, where the whole atmosphere
is transported by a small radial distance, &, while preserving its pres-
sure and density profiles, p(r) — p,(r — &), and p(r) = pp(r — &),
where the b index indicates the background solutions. We also have,
u" = d&/dr. We will demonstrate that for a sufficiently thin atmo-
sphere, we will recover a radial eigenmode that oscillates with the
same frequency as a test particle about ry. This gives us the follow-
ing two equations to solve,

d’é ) 0 _ r
P-ﬁ-m (apb("_%—)) =—-MF(r,u"), a7

87 () App(r) _ _MFG.0), (18)
po(r) Or

where we have been explicit with the r dependence for clarity. The
system can be simplified to one equation after expanding in terms
of &€, and substituting equation (18) into equation (17) to get,

1 d% 0F(r,0) dlng"(r)

Mae OO R O

E=—-F(@r,u").
19
At this point we invoke the thin shell limit. We assume that we

have a thin atmosphere concentrated around, ry. This allows us to
expand F around r = ry and u” = 0 to get,

o oF
u
0.0 ou”

, (20)

. 0F
Fr,u")y~(r—ry) —
or 70,0
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where we have used, F(ry, 0) =0, which we recall from Sec-
tion 2.2. Substituting in the expansion and noting that (r — ry)&
is second order in small quantities, we are left with the following
equation,

1 &%  oF

1d% d  or
M dz?  Qu’

0.0 4T or

£=0. 1)

0,0

This is the equation for a damped harmonic oscillator (assuming
the appropriate signs for the derivatives of F). The equation of
motion contains no fluid terms and so we expect this particular
incompressible mode to oscillate about the equilibrium position
with the same frequency as a test particle, in fact, the trajectories
should be identical in the limit of small perturbations.

4 OSCILLATIONS

4.1 Undamped oscillation frequency

Our equation of motion in the thin shell limit is given by equation
(21). In order to calculate the frequency of oscillations, first we will
neglect the damping (second) term in equation (21). If

0F

—-— 0, 22
or ~ (22)

0,0

then we can expect the harmonic oscillator solution, with the angular
frequency in gravitational units as

o= u%"| . (23)
or 0.0

We can tell that the above inequality holds from Fig. 1, but we
will calculate it explicitly to find the frequency that the atmosphere
would oscillate at if the radiation drag were negligible.

Taking the derivative and substituting for the radius of the equi-
librium position in terms of A, we get
(1277

aMy

To put our angular frequency in terms of s
to getw = @/G.

We have calculated our angular frequency with respect to the
proper time experienced by the shell, t, so we multiply by a factor

of g, to redshift the angular frequency into the coordinate time, 7.
o' = w1 —=2M/ry = Aw. The frequency, v = /2, is then

o =

(24)

~1, we restore ¢ and G

€ L ons 08(1 — 22 MO gy (25)
v = @ ~ 8. - —= kHz.
2nG M
In Fig. 3 we can see a plot of v as a function of A. An example value

of A = 0.8 with a mass of 1.4 M, gives, v = 750 Hz.

4.2 Damped oscillations

At this point, we calculate the strength of the radiation drag for small
velocities. If the drag coefficient is small, then we should further
explore this and other oscillation modes as a possible explanation
for X-ray burst QPOs. If we find that the drag coefficient is large
enough to overdamp the oscillations, then we should rule out this
particular mode of the optically thin atmospheres. Although, one
should still study the oscillatory behaviour of the optically thick
atmospheres which may be different.
Our equation of motion is now given by

1d6  oF| d&  (1-x)
M dr? 16M3)2

£=0. (26)

;
ou” |, odr
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Figure 3. A plot of frequency of oscillations, v, about ro with respect to
the Eddington ratio, A, above, and with respect to ry below. The neutron star
mass is chosen to be M = 1.4 M. Also shown is the interesting frequency,
600 Hz which corresponds to A ~ 0.82 and the A for which ry = 5M, below
which the frequency is not physical for a neutron star of that radius.

To calculate the drag coefficient for our linearized equation of
motion, we just need to evaluate the " derivative of F.

To calculate the u” derivative, we return to our equation for the
flux, where we have already simplified the first term. Substituting
for I(r) gives

Ly Ly 1-2M/R
T 42 4mR2 (1 —2M/r)?

We take the definition of € from Stahl et al. (2013),

r

[TV e 7

THY

¢ = L7 uplty (28)
7l (r)

and the relevant, dimensionless tetrad components of 7" written
as, TW® and TW®, derived in Abramowicz et al. (1990), given
by
TO0 = 2(1 — cos ), (29)
20 _ 2 3
T = 5(1 — cos’ a), (30)

also in terms of the viewing angle, «(r). Substituting back into the
equation of motion keeping terms to first order in ", we now have

1 A
o) =5 m =
I 1—2M/R

T (r)r) 4 O] r
O =2M )y [TOO 4+ TOO ", (€3))

which makes evaluating the derivative very simple,

0F » 1-2M/R
dur  R2(1—2M/r)?

[FO0 4 FOO] (32)

At the point, we only need to evaluate the derivative at 7,

OF|  1—-2M/R[2
|, MR O[3

(1 — cosay) (c032 oy + cosag + 4) R

(33)
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where

2 2
sin a(rg) = (1 — AZ)M— _(R/M)”

41-2M/R’ 34

From here, it becomes much simpler to switch to dimensionless
variables scaled by the neutron star mass,

Then the equation of motion is

d’E o0F dé oF .
M? — 4+ | ME=o. 35
dg? + our|, ,dz = 0|, , d )
If, for convenience, we set the dimensionless quantities
o0F (1 —2A2*
=M = =7 36
f or |0 1612 (36)
o0F 1-2/X
g = 1‘42 = 7/
ou |, o A3X2
2 2
X g(l — COos ) (cos oy + cosap + 4) s 37)
then we can classify the damping from the sign of
2
2 8
=2 _ f. 38
=y S (38)

If w} <0, then we have an underdamped oscillation, w? > 0 is
overdamped and wq = 0 is critically damped.

If we take some example values as before, A = 0.8 and R = 5M,
then we get

f ~0.0016, g ~ 0.089,
wq = 0.06 = 88557,

Because wy is real, we have an overdamped solution with an
exponential decay without oscillation. For this reason, we do not
label non-oscillating quantities of dimension (s)~! with Hz, so that
they are not to be thought of as oscillation frequencies, but rather
inverse decay time-scales. In fact, over the whole reasonable pa-
rameter space of A and R, the eigenmode is overdamped. This can
be seen in Fig. 4, a plot of the ratio of &} to @*. We can see that for
small A, we are strongly overdamped and as A increases, the solu-
tion approaches critical damping. Our damped harmonic oscillator
equation yields two exponential solutions of the form Cexp (y + 7).
where

8 g
=—=+4/=—f. 39
Y+ > 1 f (39)
Both of which correspond to decay constants of y. = —0.025,
y - = —0.064. If we convert to seconds and redshift for the observer
at infinity, we have
. c/B(ro) s o M\
= ———"y, =32.31 x 10° —— ) Ay, 40
Vi 2mr,g 125 x 10°s Mo 12 (40)

v, =369s!, y. =945s7".
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Figure4. Contours of &)g /@? over a reasonable parameter space for neutron
star radius, R, and Eddington ratio, A. The grey region on the left-hand side
of the plot corresponds to 79 < R which is unphysical. The thick line marks
the boundary where ry = R. There is no region on the plot where a2 is less
than zero which means that the thin shell eigenmode is overdamped over
the parameter space we consider.

The scales of decay for each solution are then 1/y 1 so

7y = 0.0027s, 7 = 0.0011s.

5 VALIDITY OF THE LINEAR REGIME

A key assumption mentioned at the beginning of the work relied
on the atmosphere’s thickness and velocities being small enough
to be able to linearize F(r, u”). This allows us to obtain analytical
trajectories for the fluid for the thin shell mode, but we are interested
to see the extent to which this linearization is valid, both in position
and velocity. While we do not expect oscillatory behaviour to exist
at larger velocities and displacements, we can still study how the
time-scale for decay varies from that predicted by the analytical
treatment.

To explore the degree to which the linear regime of F is valid,
we compare the trajectories of the thin shell mode to those of test
particles which obey the equation of motion,

3
dz?
We expect the trajectories from this equation, given by &,.(¢) to be
similar to the trajectories given by equation (21), which we will
denote by &,(7).

To integrate this equation, we use the ODEINT routine from the scipy
package which relies on the Lsopa routine from the FORTRAN library
ODEPACK. We test a variety of initial conditions. We plot these against
the analytical trajectories given by solving the linear equation of
motion, of which the trajectories are just linear combinations of
exponentials. The plots, shown in Fig. 5, show both trajectories
from the linear equation of motion (blue) and from the full equation
of motion (red dashed).

The first plot in Fig. 5 shows trajectories starting with zero initial
velocity. The initial positions of the test particle are readable from
the axis where the y-axis represents the fractional displacement from
the equilibrium position f = (0)/rp — 1. We can see from the plot
that deviations from the test particle solution start to occur between
f=0.1and 0.2. The deviation is small, however, and the atmosphere
settles into the equilibrium position at about the same time as the test

= —M>F(r,u'). 41
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Figure 5. Trajectories from a variety of initial conditions analytically in-
tegrated from the linearized equation of motion, equation (21) (blue), and
numerically integrated from the test particle equation of motion, equation
(41) (red dashed). The vertical axes show, f, the fraction the initial position
is from the ECS. Upper: the initial velocity is zero and the initial position
can be read from the axis. Middle: the initial position is at the ECS and
the initial velocities are given by, v(0)/c = £0.005, £0.01, +0.05, £0.1.
Lower: Initial conditions are given by (f(0), v(0)/c) = (0.1, 0.05), (0.1,
—0.05), (=0.1, 0.05), (—.1, —0.05).

particle. We expect that for v(0) = 0, the atmosphere trajectory is
valid up to initial displacements of 10 per cent from the equilibrium
solution, and a reasonable approximation up to 20 per cent away.

The second plotin Fig. 5 shows trajectories with an initial position
at the equilibrium position, but with different initial velocities of
v(0)/c = £0.005, £0.01, £0.05, £0.1. We can immediately see
that v(0) = £0.1c¢ shows vastly different trajectories, which are
also highly asymmetrical with respect to the equilibrium position,
indicating that the atmospheric approximation is no longer valid
and even at v(0)/c = £0.05, there are significant deviations. We
expect the linear regime in this case to hold up to v(0)/c = £0.01.

The third plot in Fig. 5 shows trajectories corresponding to the
following initial conditions:

(f(0), v(0)/c) = (0.1, 0.05), (0.1, —0.05),
(=0.1,0.05), (—.1, —0.05).

The two inner trajectories show much better agreement with the test
particle. This is because their initial conditions keep them closer to
the equilibrium position where the atmospheric equation of motion
more accurately reflects that of the test particle.

5.1 Convergence

We also find it necessary to numerically confirm the convergence
of the linearized fluid equation to the test particle equation. In
essence, we want to show that the trajectories from the equa-
tion (21) approach those from equation (41) as £(0) — 0, u'(0)
— 0. We measure the deviation in the trajectory by summing up
the fractional difference along n = 100 points, denoted by t;, which

MNRAS 461, 3233-3238 (2016)
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Figure 6. Here we show the results of the convergence test for the lineariza-
tion of the equation of motion. For initial conditions, (£(0), ©"(0)) = (31,
82). The upper panel shows different curves corresponding to different &,
as indicated by the legend. The curves match the legend as read from top to
bottom. The §;s are shown on the horizontal axis. The lower plot shows the
same except for different curves of §; with 6, on the horizontal axis.

are evenly sampled along the trajectories shown in Fig. 5. The error
per timestep is then calculated by,

1N Je(m) — (@)
_1! , 42
‘ n; &) @

which we calculate for different values of the initial conditions,
(£(0), u"(0)) = (61, 82). A plot of the convergence is shown in
Fig. 6. We can see that € shrinks to the level of machine precision
as §;, 6, approach zero.

6 DISCUSSION AND CONCLUSIONS

6.1 Consequences for the stability of atmospheres

We have shown that for optically thin levitating atmospheres, as in
Wielgus et al. (2015), the radial, incompressible, thin shell modes
are stable against radial oscillations owing to the strength of the
radiation drag term. The natural frequency of these oscillations is
of the order of ~10? Hz if they were not overdamped. Moreover, the
frequency increases as the luminosity decreases. This would lead to
an increase of frequency with time if the luminosity were to decay
with time, such as during the decay phase of an X-ray burst. The
trajectories of the fluid particles in these oscillations are exactly the
same as for those of the test particles, and the incompressible mode
is constructed in a way that does not allow for extra forces due to
pressure gradients. It is possible to conceive of a mode where the

MNRAS 461, 3233-3238 (2016)

pressure terms become important, such as a breathing mode where
the shell expands and contracts in opposite directions about the
pressure maximum so that the shell becomes thinner and thicker.
It is also possible to construct pressure corrections to the thin shell
incompressible mode to extend its validity to larger thicknesses. If
the eigenfrequency of such a mode is large enough, one can imagine
that underdamped oscillations may occur, and so it would be worth
exploring such other modes.

6.2 Optically thick oscillations

In this work, we have only considered optically thin solutions.
Wielgus et al. (2016) have extended their work to include optically
thick atmospheres. These atmospheres are constructed using numer-
ical techniques, so it is difficult to calculate analytical oscillation
modes. In future work, we plan to extend this analysis to include
numerical simulations of both optically thin and thick Eddington
supported atmospheres. Since photons diffuse through the optically
thick atmospheres, as opposed to free streaming through the thin
ones, it is possible that the radiation drag is less efficient at damping
oscillations. We expect the drag to only be effective in the optically
thin edges of the atmospheres.
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3 Paper 2: Radiative GRMHD simulations of
accretion and outtflow in non-magnetized

neutron stars and ultraluminous X-ray sources

In this paper (Abarca et al. 2018), I performed two 2D axisymmetric GRRMHD simulations of accretion
disks with accretion rates around 15Mgqq. One simulation contains a black hole as the central object,
and the other an unmagnetized neutron star, both with masses equal to 1.4 M, so that they could be
directly compared to one another. I ran them for long durations (80000 GM ¢~ for the black hole, and
160000 GM ¢~ for the neutron star) in order for the solution to converge at large radii providing more
realistic assessment of the nature of the gas outflows.

The black hole simulation was consistent with previous simulations in the literature (although
no other black hole was considered with such a low mass) showing strong outflows with collimated
emission in the funnel region with inferred isotropic luminosities peaking around 10 Mgqq making it
a reasonable candidate for the some of the lowest luminosity ULXs.

I modeled the neutron star using a radially reflective, angular momentum absorbing boundary
condition. As gas hit the inner boundary, it slowed down and started to accumulate on the surface
forming an atmosphere which was highly radiation pressure dominated. The outer layers of the
atmosphere launched a nearly spherical outflow obscuring the entire inner region from view and
radiating nearly isotropically at around 1 Lgqq. I concluded that non-magnetized neutron stars would
not be good candidates for ULXs because it is necessary to have something to clear the funnel region

so that radiation can escape and become collimated by the outflows.
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ABSTRACT

We run two general relativistic radiation magnetohydrodynamic simulations of super-
Eddington accretion discs around a black hole and a non-magnetized, non-rotating neutron
star (NS). The NS was modelled using a reflective inner boundary condition. We observe the
formation of a transition layer in the inner region of the disc in the NS simulation which
leads to a larger mass outflow rate and a lower radiative luminosity over the black hole case.
Sphereization of the flow leads to an observable luminosity at infinity around the Eddington
value when viewed from all directions for the NS case, contrasting to the black hole case
where collimation of the emission leads to observable luminosities about an order of magni-
tude higher when observed along the disc axis. We find the outflow to be optically thick to
scattering, which would lead to the obscuring of any NS pulsations observed in corresponding
ultraluminous X-ray sources.

Key words: accretion, accretion discs — MHD — stars: neutron.

1 INTRODUCTION

The transfer of matter with angular momentum onto a compact ob-
ject occurs via an accretion disc through which mass and angular
momentum are transported in opposite directions through viscous
processes (Shakura & Sunyaev 1973). The viscous process is now
believed to be magnetic turbulence induced by the magnetorota-
tional instability (Balbus & Hawley 1991).

One particular class of accreting objects which has gained interest
in recent years are ultraluminous X-ray sources (ULXs). These
are X-ray bright objects observed outside the centres of galaxies
with luminosities from 10*° to 10*' ergs s~'. The first explanations
for such bright X-ray objects favoured the elusive intermediate
mass black holes radiating at or below the Eddington luminosity
(Colbert & Mushotzky 1999). Up until the discovery of ULXs, the
most luminous stellar-mass, persistent X-ray source was known to
be Sco X-1, a neutron star (NS) radiating at its Eddington limit
at around 10°® erg s=! (Shklovsky 1967; Bradshaw, Fomalont &
Geldzahler 1999). Currently, the leading explanation for ULXSs is
beamed emission from accretion in an X-ray binary (King et al.
2001), implying that super-Eddington accretion is responsible for
the large observed luminosities. In particular, a set of three such
objects were observed which reveal X-ray pulsations with a period
on the order of 1 s (Bachetti et al. 2014; Fiirst et al. 2016; Israel
et al. 2017a,b) excluding black holes as the accreting objects in
these three sources. It can now be said with some certainty that a

* E-mail: dabarca@camk.edu.pl

large fraction of ULXSs are accreting NSs (Kluzniak & Lasota 2015;
King, Lasota & Kluzniak 2017; Wiktorowicz et al. 2017; Pintore
et al. 2017). There have been a wide range of proposed values for
the strength of the magnetic field from relatively low (B < 10°
G) (Kluzniak & Lasota 2015), to moderate (10'° G < B < 10"
G) (King et al. 2017; Walton et al. 2018), to high (B > 10"* G),
magnetar-like fields (Eksi et al. 2015; Mushtukov et al. 2015b).

Accretion onto a NS is more complicated than accretion onto a
black hole. NS have no event horizon. They have a surface layer
and outer crust which can reach densities of up to 10'' gcm =3 at its
base, where it is composed of fully ionized neutron rich nuclei. At
larger radii, and lower densities (~107 g cm~3) the composition of
the nuclei becomes less neutron rich. Below 10* g cm~3, the nuclei
are no longer fully ionized. Finally, near the surface, the outer crust
is composed mainly of crystallized iron atoms reaching down to
10 g cm™3 (Chamel & Haensel 2008).

Gas accreting onto these outer layers is expected to slow down
and release some of its kinetic energy (Syunyaev & Shakura 1986;
Kluzniak & Wilson 1991; Narayan & Yi 1995; Narayan, Garcia
& McClintock 1997; Inogamov & Sunyaev 1999; Sibgatullin &
Sunyaev 2000; Popham & Sunyaev 2001; Mukhopadhyay & Fang
2002) as it spins up the star (Kluzniak & Wagoner 1985). This
energy can be converted into radiation (normally X-rays) or trans-
ferred to the outflowing gas. Additionally, many NSs have strong
magnetic fields, some of which can be strong enough to channel
the accreting gas into dense accretion columns, depositing gas at
the magnetic poles, forming hot spots at low accretion rates, <107
g s~!. Misalignment of the magnetic poles with the rotation axis
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Published by Oxford University Press on behalf of the Royal Astronomical Society

020Z AIN 91 Uo Jasn Syd Jo anus) [esiwouoisy snoluiado)) snejodiN A 96£8€0S/9E6E/E/6. 10BNSe-aoILe/Seluw/wod dno olwapeose//:sdiy Woll papeojumo(]



causes the hot spots to rotate resulting observationally in X-ray
(accretion powered) pulsars. At high accretion rates (10'7 ~ 10"
g s71), the gas is expected to experience a radiation shock and to
form an accretion column above the NS surface through which gas
sinks slowly through a dense radiation field to eventually settle on
the NS surface (Basko & Sunyaev 1976; Mushtukov et al. 2015a,b;
Revnivtsev & Mereghetti 2015). As the accretion rate increases, the
accretion column starts to widen and spread over a surface roughly
corresponding to the surface of the magnetosphere. Emission from
the central regions and through the sides of the inner part of the
accretion column can interact with the outer parts of the accretion
column producing complicated pulse profiles (Mushtukov et al.
2018).

At even higher accretion rates (=10 g s71), in the context of
ULXSs, the accretion column spreads into an accretion curtain, a
geometrically extended surface corresponding to an optically thick
layer completely surrounding the pulsar magnetosphere which re-
processes all of the radiation generated near the NS surface strongly
smoothing the pulse profile (Mushtukov et al. 2017). Observation-
ally, in pulsating and non-pulsating sources, this manifests as a dou-
ble blackbody with hot (>1 keV) and cold (<0.7 keV) components
corresponding to the thermal emission from the accretion envelop-
ing the magnetosphere, and thermal emission from the accretion
disc truncated at the magnetosphere, respectively (Koliopanos et al.
2017).

Here, using numerical simulations, we try to see if non-pulsating
ULXs can be explained by super-Eddington accretion onto NS. We
ignore the effects of a stellar magnetic field, (for an accretion rate
of 10 times the Eddington limit and a magnetic moment of u <
10*” G cm?® a simple calculation of the Alfvén radius shows the
effects of the magnetic field are confined close to the NS surface),
and consider only the effects of a hard surface. We use a general rel-
ativistic radiation magnetohydrodynamic (GRRMHD) code KORAL
to capture the most relevant physical processes.

1.1 NS related accretion simulations

In this section, we mention some simulations that are related to NS
accretion. The X-ray spectra from spherical accretion onto high- and
low-mass NSs was computed from coupled hydrodynamic radiation
transfer calculations, which were shown to yield results which differ
strongly from a blackbody (Alme & Wilson 1973). Dhang, Sharma
& Mukhopadhyay (2016) performed hydrodynamic simulations of
spherical accretion onto a hard surface in one and two dimensions.
The hard surface was modelled in two ways, with a reflective,
and a ‘leaky’ boundary condition, the latter being where mass is
allowed to cross the inner boundary at a fixed subsonic speed to
model efficient cooling. This is important because not all works
include a hard surface. More complicated Bondi—Hoyle (El Mellah
& Casse 2015) and magnetic Bondi-Hoyle (Toropina, Romanova
& Lovelace 2012) simulations have been performed, but they are
without a hard inner boundary.

A 1.5D coupled radiative transfer and hydrodynamics calculation
was performed by Kluzniak & Wilson (1991) which simulated the
boundary layer between the NS and the accretion disc. The bound-
ary layer was simulated by introducing an optically thin stream of
plasma inside the innermost stable circular orbit (ISCO), where the
infall velocity quickly becomes supersonic. The plasma decelerates
in the upper layers of the boundary layer on the NS surface resulting
in the creation of hard X-rays. Because velocities in the accretion
gap are supersonic, such a calculation is valid without considering
the contribution of the accretion disc.

Accretion onto NSs 3937

A further work of interest is Kawashima et al. (2016), who per-
formed radiation hydrodynamic simulations of the accretion column
of a super-Eddington accretion NS using flux-limited diffusion,
where the radiative flux follows the gradient of radiative energy
density. They found sub-Eddington luminosities along the opti-
cally thick accretion column but super-Eddington luminosity when
viewed from the sides, in agreement with Basko & Sunyaev (1976).

Romanova et al. (2012) have performed global MHD simulations
of MRI-driven accretion onto magnetized stars. A number of inter-
esting results are presented on the interaction between the stellar
magnetic field and the accretion disc, however, the lack of strong
gravity or radiation hydrodynamics means that the results do not
accurately describe accretion onto NSs at large accretion rates.

Parfrey & Tchekhovskoy (2017) used an innovative method to run
GRMHD simulations of accretion onto rotating magnetized NSs to
model accreting millisecond pulsars. Their method interpolates be-
tween the normal GRMHD flow and the force-free magnetosphere.
At the lowest magnetizations of the NS, they show that the magnetic
field is crushed by the accretion flow, and accretion proceeds nor-
mally. Due to the lack of radiation, their simulations are scale-free.
When scaling their system to the mildly super-Eddington accretion
flow that we describe in this work, we find that indeed the magnetic
field would be crushed at a magnetic moment of & = 10?° G cm?,
even when rotating at millisecond periods.

Takahashi & Ohsuga (2017) have published the first global 2.5D
GRRMHD simulations of accretion onto a NS and their work rep-
resents the state-of-the-art on the subject. They simulate super-
Eddington accretion onto a magnetized NS with the radial flux and
velocity set to zero at the inner boundary, as a means to model
a NS ULX system. They report luminosities of about an order of
magnitude above the Eddington limit with a significant amount of
beaming which accurately describes a non-pulsating ULX source.
In their simulation, the magnetic field is strong enough to truncate
the disc leading to accretion along magnetic field lines. They ob-
serve some matter piling up at the inner boundary due to the inner
boundary condition, but do not run the simulation for long duration,
(tmax = 15000¢,), and so it is hard to say what the effect of the
accumulation of gas has on the accretion disc.

Our work considers the context of a boundary layer (as opposed
to an accretion column) with an accretion disc, with a sophisticated
radiation treatment which deals with the optically thick and optically
thin regimes. In our simulation, we will focus strictly on the effect
of a reflective boundary. We will run our simulations for longer
durations, r ~ 160000 t,, where t, = GMI/c3, to see what happens
when a large amount of gas is accumulated in the vicinity of the
NS.

2 NUMERICAL METHODS

We investigate accretion onto NSs using a sophisticated 3D gen-
eral relativistic radiation magnetohydrodynamics solver, KORAL used
extensively to study accretion onto black hole at high and low ac-
cretion rates, and other related phenomena. Details of the numerical
implementation are given in Sagdowski et al. (2013, 2015). Here, we
describe the most relevant features.

2.1 Governing equations

The equations of GRRMHD, which can be written in their conser-
vative form as

Vyu(put) =0, ey
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v, T", = G,, @
V,R*, = —G,, 3
V. (mu") = n, 4)

are solved in KORAL on a static 1D, 2D, or 3D mesh. Our mesh is
a spherical 2.5D (2D axisymmetric) grid using a static metric, g,,,
with signature (— + + +). Here, p is the gas rest-mass density in
the comoving fluid frame, u* is the gas four-velocity, 7, is the
MHD stress-energy tensor given by

1
T, = (p + i + p + bHu'u, + (p + Ebz) 8% —b'b,. (5

Here, u;y, is the internal energy of the gas, and p = (y — Duiy, i8S
the gas pressure, calculated using the adiabatic index, y = 5/3. The
radiation stress-energy tensor is given by R*, which is coupled to
the gas stress-energy tensor by the radiation four-force, G,, making
use of electron scattering and bremsstrahlung opacities as well as
Comptonization (Sadowski & Narayan 2015), which evolves the
photon number, n, by taking into account the creation and annihila-
tion of photons by emission and absorption, 72, while conserving n
for Compton scattering exchanges of energy. The radiation stress-
energy tensor is completed using the M; closure scheme (Sadowski
et al. 2013), which assumes there is a frame in which the radia-
tion is isotropic. The M; scheme allows radiation to diffuse through
gas at large optical depths, and to freely stream along geodesics at
very low optical depths. The magnetic field four-vector, described
by Gammie, McKinney & Téth (2003), is given by b*, and it is
evolved using the induction equation which, when written in the
coordinate basis appears as

d(v/—gB") = —d; (V—gblu' —b'ul). (6)

Here, B' is the normal magnetic field three-vector, which is related
to the magnetic field four-vector by

b' = B'utg,, 7
. B+ b
b' = — 3

for metric g;; and metric determinant, g (Komissarov 1999).

2.2 Mean-field dynamo for 2.5D runs

One particularly useful tool implemented in KORAL is a mean-field
magnetic dynamo which allows for axisymmetric 2D (2.5D) accre-
tion disc simulations to be run for long durations without depleting
the magnetic field due to turbulent dissipation, which normally oc-
curs in axisymmetric simulations of MRI (Sadowski et al. 2015).
The dynamo has been tested against 3D simulations and has been
found to accurately approximate the disc’s spatial properties, ac-
cretion rate, surface density, and angular momentum for example.
The 2D dynamo disc does, however, have a tendency to overesti-
mate the magnitude and variability of the radiative flux (Sadowski
& Narayan 2016). Nevertheless, the advantages of being able to run
a 2D simulation as opposed to 3D make the mean-field dynamo a
valuable tool, allowing for almost a 100-fold speed up in runtime,
and so we chose to implement it in this work in order to run long
duration simulations. We also implement an adaptation to make the
dynamo more suitable to simulations where we expect a significant
amount of gas to accumulate at the inner simulation boundary. We
include a smooth cut-off to deactivate the dynamo in cells with a
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specific angular momentum lower than 80 per cent of the Keplerian
value.

3 NUMERICAL SET-UP

3.1 Initial conditions

We initialize our accretion disc in a typical way by starting with
an equilibrium torus near the non-rotating black hole as given in
Penna, Kulkarni & Narayan (2013). The torus is threaded with
a weak magnetic field in loops of alternating polarity. The total
pressure is distributed between gas and radiation assuming local
thermal equilibrium. Once the simulation starts, the MRI quickly
develops turbulence and accretion begins. We measure the rate of
mass accretion in units of Lggq/c?, where Lgqq is the Eddington
luminosity and c is the speed of light. The initial torus is set up
to give a constant accretion rate of about 200 Lgga/c*> which would
correspond to a luminosity of about 10 Lgyq for the efficiency of a
Shakura—Sunyaev disc.

3.2 Boundary conditions

A common practice when simulating accretion onto stars is to ig-
nore the effects of a hard surface and let gas flow through the inner
boundary in a standard outflow boundary condition for the hydro-
dynamic quantities. This allows the simulation to approach a quasi-
steady state and is useful for studying the interaction between the
stellar magnetic field, and the accretion disc (Romanova et al. 2012;
Cemelji¢, Shang & Chiang 2013). This allows the star to behave
somewhat like a black hole.! In order to study the the difference
between an inflowing boundary condition at the inner edge, and a
reflective boundary condition, as well as to have a natural, physical
inner boundary as a baseline comparison, we run one simulation
with a black hole as the inner boundary condition. This is achieved
by choosing a horizon penetrating coordinate system (Kerr—Schild)
and placing the inner boundary of the simulation sufficiently behind
the event horizon. This simulation we call BHRUN.

In order to study the effects of the release of kinetic energy, which
is expected to significantly impact the behaviour of the accretion
disc and outflows, we implement a reflective boundary for the main
simulation of our study. The reflective boundary at r = ry, is set
up so that the reconstructed radial velocity of the gas at the inner
boundary is opposite about zero (u; = —u/, where u;, u). are the left
and right reconstructed radial velocities at the cell interface of the
inner boundary), so that no gas is able to leave the domain. We also
set the tangential velocities u?, u? in the ghost cells to zero. Note
that this does not enforce the reconstructed tangential velocities to
be exactly zero at the inner boundary, it does, however, effectively
remove angular momentum and allows the gas to approach a non-
rotating state at the inner boundary, and so we expect the formation
of a boundary layer. Radiative quantities are treated in the same way.
We expect these boundary conditions to more accurately reflect the
behaviour of an accretion disc and a boundary layer around a NS
than an inflow boundary condition, and so this simulation we call
NSRUN.

I'This is not entirely true, there are a variety of inner boundary conditions
on the magnetic field quantities that have various effects on the absorption
of the hydrodynamic quantities.
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3.3 Grid

Both simulations are run in Kerr—Schild coordinates (although this
is not strictly necessary for NSRUN) with a non-rotating, central mass
of M = 1.4 Mg (Schwarzschild space-time). We run two simula-
tions on 2D, axisymmetric spherical grids with logarithmic spacing
in radius, and increased resolution near the equatorial plane. The
resolution for NSRUN is N, X Ny x Ny = 352 x 240 x 1. The radial
coordinate spans from 7, = 5rg t0 oy = 50007, where r, = GM/c?.
The resolution was higher for BHRUN (N, x Ny x Ny = 384 x 240
x 1) because we have to extend the inner boundary to below the
event horizon at r = 2r,. The larger number of radial grid cells al-
lows the two simulations to have comparable resolution at the same
radii.

4 RESULTS

We have run two axisymmetric GRRMHD simulations, one with a
reflective, non-rotating inner boundary at radius r = 5r, NSRUN, and
one with a black hole inner boundary, BHRUN. Snapshots and time
averages of both simulations are shown in Figs 1 and 2. Each figure
contains four images, each corresponding to a different time, #; €
{75001,, 150001,,300001,, 600001, }. Snapshots at these times
are shown in the upper two quadrants of each image. We are also
showing the time averaged structure of the simulations in the lower
two quadrants of each image, all of which are averaged from ¢ = 1;
— t;/3to t =t; + t;/3. The right two quadrants of each image show
rest mass density, and the left two quadrants show radiation energy
density in the fluid frame.

The BHRUN simulation forms a typical, geometrically thick, super-
Eddington accretion disc similar to what is seen in previous sim-
ulations of this type, see Yang et al. (2014), Jiang, Stone & Davis
(2014) Sadowski et al. (2015), Sadowski & Narayan (2016), and
Ogawa et al. (2017), for examples. As the disc reaches inflow equi-
librium, one can see the formation of a funnel region along the polar
direction. The funnel region is nearly devoid of gas but is filled with
radiation and so one can expect the disc to appear very bright when
viewed along the funnel.

The reflective inner boundary shows a much different scenario.
Gas cannot pass through the inner boundary, so it accumulates a
dense layer around the inner edge of the simulation. Atlate times, the
density at the inner edge reaches nearly 10 g cm™>. The density at the
inner edge increases gradually as more and more gas is compressed
into the atmosphere. We can also see large amounts of radiation
being accumulated at the inner boundary due to a combination
of dissipation and advection. In general, hot flows of this type
are optically thick to scattering, but optically thin to absorption.
However, it is unclear a priori if the radiation can escape to infinity
in any reasonable amount of time because gas is blown off the
outer edges of the accumulating layer which forms a dense outflow.
Photons produced near the disc must random walk through this
thick outflow, some of them may even be scattered back through
the disc. We are particularly interested in whether or not pulsations
may be visible. With such a thick scattering dominated atmosphere,
it is likely that pulsations would lose their coherence. We measure
the scattering optical depth in the next section.

4.1 Transition layer and accretion disc structure

The inner boundary of the NS simulation causes the angular ve-
locity of the gas to approach zero. This is seen in Fig. 3. The top
panels of Fig. 3 show the density-weighted, -averaged profiles
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of the specific angular momentum of time averaged time intervals
used in Figs 1 and 2 for NsrRUN. Because NSRUN is computationally
cheaper compared to BHRUN and because the behaviour at late times
is interesting we run NsRUN for an additional 80000 7, so that we
can show an additional time interval in Fig. 3, t5 ~ 120000¢,. The
left-hand three panels show the mid-plane quantities, averaged or
integrated over a range of 0 from /2 — 7/20 to 7/2 + 7/20. The
right-hand three panels are integrated in the polar region, over 6
from /8 — /20 to 7/8 + 7/20. As the simulation evolves, we can
see the formation of a transitional region which expands outwards
as more gas is accumulated. The rate of expansion, measured by
calculating the radius at which ¢ reaches 90 per cent of its Kep-
lerian value, follows a %% power law. For accretion onto NSs at
lower accretion rates, this transitional layer usually lies in a small
belt around the star where the flow properties transition to match
the stellar surface. This is the classical picture of a boundary layer.
We can see from Fig. 2 that we have a much more extended, atmo-
spheric layer, although the flow velocity does transition to match
the surface of the NS, so we will refer to this region as the transition
layer.

The process by which angular momentum is transferred from
the accretion disc to a NS is complicated. Various viscous and
magnetic processes are involved. We try to reproduce the effect
of driving the tangential velocity to zero at the inner edge of the
simulation with our inner boundary condition. The normal mag-
netoturbulent processes that transport angular momentum through
the disc do not operate on the numerical level of the cell interface.
Instead angular momentum is transported between cells according
to the flux computed by the HLL Riemann solver. The angular mo-
mentum flux is made up of a hydrodynamic and a magnetic compo-
nent, 7,4 = T,(; D4 T,(gl “®) where T,((l; D) — (p + Uine + plu,uy and
T,((;" @ = py iy — b.by. By far the largest contribution at the in-
ner edge is the pu,u, term. The inner boundary condition leads
to a flux that is approximately, T,4 ~ pu,uy/2. Reflecting the
angular velocity, for example, would lead to T,y ~ pu,us. We
can see that the source of the torque at the inner edge is nu-
merical in nature. A more detailed study of the effect of differ-
ent boundary conditions on the transport of angular momentum
through the transition layer is left for further studies. For now,
we are satisfied the angular momentum transitions towards zero
at the inner boundary through the mid-plane and along the disc
axis.

The middle two frames of Fig. 3 show angular velocity averaged
in the same way as the top panels of Fig. 3. We can see the expansion
of the transition layer evolving into a quasi-flat region in angular
velocity in the mid-plane indicating that some large scale coupling
is causing the inner disc to rotate like a rigid body. The innermost
region is driven towards zero angular velocity as is expected by the
boundary condition.

The polar region shows different behaviour. The angular momen-
tum in the polar regions increases with radius at early times, and
evolves to be quasi-flat at late times in the inner region. Meanwhile,
the angular velocity starts quasi-flat, and evolves to decrease with
radius at late times, so the transition layer does not display rigid
body behaviour near the poles.

As is seen in Fig. 2, the transition layer reaches very high den-
sities, and so, even though it has very low angular velocity, it
is still able to contain a significant amount of angular momen-
tum, as shown in the bottom panels of Fig. 3. Here, we are plot-
ting the angular momentum integrated at a particular radius, 7,
J(r) =2m f pug~/—gdb. The total angular momentum in the tran-
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Figure 1. Here, we show snapshots of the 2.5D axisymmetric simulations of super-Eddington accretion from BHRUN. The left two quadrants of each image
show radiative energy density in the fluid frame, and the right quadrants shows the rest mass density in the fluid frame. The upper quadrants of each image
show the instantaneous state of the simulation at time #;, and the bottom quadrants are time averaged from time #; — #;/3 to #; + t;/3. From left to right and top

to bottom the times correspond to #; = 7500 ¢4, 150001,, 30 000,, and 60 000 7.

sition layer increases with time, especially near the inner edge. An-
gular momentum is transported through the transition layer where it
accumulates at the inner edge. It is likely that a stronger numerical
torque at the inner edge would allow more angular momentum to
flow through the inner boundary, thus smoothing 7 near the NSsur-
face. Dynamically, what is important are £ and 2, both of which
are largely below their corresponding Keplerian values, and so we
do not expect a stronger torque at the inner boundary to have a
significant effect on the evolution of the simulation.

The transition layer does not display much structure in the spatial
distribution of gas density and radiation energy density, except for
a strong radial gradient, even when the colour scales are suitably
adjusted. The flow structure is much more informative.

In Fig. 4, we show the time-averaged spatial distribution of
the poloidal velocities in the two upper panels for the time in-
terval, 14, from 400007, to 80000¢,. All of the remaining fig-
ures are constructed with time averaged data over the same period.
The poloidal velocity and accretion rate are defined as follows,
P = Vuru, + uuy, Mpol = 2712 sin6 puP®'. For BHRUN, the flow
is primarily directed inward in the disc and at the inner bound-
ary. This is a boundary condition imposed by the space—time. In
the polar region, one can see the transition from inflow to out-
flow at about radius of » = 10r,. This is the stagnation radius,
above which is a radiation driven outflow. Velocities in the po-
lar region are relativistic, while velocities in the disc are around
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a few hundredths of the speed of light except in the very inner
regions.

Again, NsRUN shows a much different inner structure. Gas flows
through the transition layer in the equatorial plane where it meets
the reflective boundary and is directed tangentially along the surface
of the inner boundary until the polar regions where it is again
redirected. The whole process forms two large eddies which seem to
recycle the gas into the inner edge of the accretion flow, which could
be responsible for the large-scale coupling seen in Fig. 3. The eddies
seem to be connected to a conical outflow. We can see two streams
of gas being launched from the two regions where the eddy circles
back to the disc. It is important to note that this is the time average
structure, the non-averaged flow being much more turbulent. The
eddies are indicative of convective cells. Indeed, a calculation of the
Schwarzschild stability parameter shows that the transition layer
should be unstable to convection. Whether convection is driving
the eddy motion is more difficult to say due to the extra source of
momentum from the accretion flow.

The poloidal accretion rate is shown in the middle two panels
of Fig. 4 over a large range in r and z. The accretion rate in the
transition layer is nearly an order of magnitude higher than in the
disc, indicating that the gas is recycled many times in the inner
flow. For BHRUN, we see the typical picture of a nearly empty funnel
region, indicating that most of the outflowing gas is ejected in a
wind at larger radii.
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Figure 2. Here, using the same scheme as in Fig. 1, we show four snapshots of NsruN, the simulation with the reflective boundary condition.

We expect a much different picture in the presence of strong
magnetic field. For u > 10*® G cm?, we expect the accretion flow
to be directed along magnetic field lines and deposited at the poles
for a dipolar magnetic field as was seen in Takahashi & Ohsuga
(2017). The magnetic field would also arrest any outflows from the
innermost regions, so it is likely that an optically thin funnel would
also be able to form in this case, leading to much larger observed
luminosities.

We show the poloidal accretion rate over an even larger range of
r and z in the lower two panels of Fig. 4. We can no longer see the
structure of the conical outflows in NsSRUN which was decollimated
at larger radii. We also show a contour of the relativistic Bernoulli
number in green, Be = 0, which we define and discuss in more detail
in Section 4.2. We can clearly see that more material is launched in
NSRUN than in BHRUN.

The region behind the initial torus in our simulation is unphysi-
cal. In a real physical system, this region would be occupied by the
gas flowing from the companion star. We exclude this region in a
somewhat arbitrary way. We pick the last streamline which origi-
nates from the surface defined by Be = 0 (shown in white) which
does not turn back towards the disc mid-plane at larger radii. The
gas inside this region is expected to flow back towards the disc or
to the companion star, and so we exclude this region from all of our
calculations.

In Fig. 5, we show the time averaged (again, over #4) spatial
structure of both discs. The colour map of density has been expanded
to cover a wider range of densities with the trade off being a lack of

detail. We show two zoom levels. Red, white, and green contours
of the scattering optical depth are also shown. From green to white
to red, the contours correspond to 74, = 0.01, 0.1, 1, 10, 100. Here,
Ty 18 calculated in a simple way,

Toea(r) = / PKes \/grrdry )

where ko = 034 g cm™2. For reference, the root-mean-

squared polar scale height of the disc defined by h =
\/ J(® —m/2)2pd0/ [ pdf. For BurUN (left), super-Eddington ac-
cretion leads to a thick disc with strong outflows and an optically
thin funnel region reaching all the way down to the inner boundary.
Again, we see a different picture for NSRUN (right). First, as is also
seen in Fig. 2 a large amount of gas is deposited in a transition layer
around the inner edge. In addition, a large amount of gas is ejected
and the entire domain is filled with a thick outflow. Measuring the
optical depth shows that this outflow is extremely optically thick.
The last contour of the scattering optical depth visible in the figure
is given by the red line which corresponds to 7, of 100. A zoom
of the entire simulation domain is shown in the bottom two panels.
We can see the photosphere for NsrUN lies on average at a couple
thousand r,, which is indicated by the white line.

In Fig. 6, we show the radial profiles of both simulations. BHRUN
and NsRUN are shown in blue and orange, respectively, for the time
interval 4. The green lines shows the later evolution of NSRUN over
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Figure 3. We plot angular momentum related quantities in the disc mid-plane (6 = /2, left) and in the polar region of the simulation (0 = 7/8, right). The
plots were averaged/integrated over 6 over a range of angles corresponding to 77/10 radians. Top: Here we show a time series of the specific angular momentum
of the gas, £ = uy for NsrRUN. The plotted quantities correspond to a p-weighted #-average of the time averaged simulation data. The durations for the averaging
are the same as for Figs 1 and 2, 11 = 75001, 1o = 15000144, 13 = 3000014, t4 = 60000 t; with an additional time interval centred at, £5 = 120000 t,. The
Keplerian angular momentum is shown by the dashed grey line. Middle: Here is the same plot as above except for angular velocity, 2 = u®/u’. Bottom: Here,
we are plotting the total angular momentum density integrated along the 0 direction.

time interval #5. The first quantity shown is the surface density,

7/2+h

Y= / prsinfdo (10)
w/2—h

integrated within one scale height. The three remaining plots corre-

spond to density weighted, 6 averages, which for a given quantity

f, appears as

7/2+h
frr/th o f/—gdo
J2+h :
S pv/—gde
The scale height captures a majority of the mass in BHRUN and can
be a reasonable approximation for the boundary of the accretion

disc. It becomes a less useful tool, however, in the inner edge of
NSRUN, where the distribution of density becomes roughly spherical,

(f)= (11)
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and the distinction between disc and transition layer requires more
information. Nevertheless, this only affects the weighting of the
quantities, which, if they are also roughly spherical, should still
give a good measure of the radial profile. We can see that the
transition layer surface density follows a power law before settling
into the accretion disc which matches that of the black hole at about
radius r = 30r,. The second panel shows u'/c, the density weighted
radial component of the four velocity. The inflow velocity for NSRUN
remains non-relativistic. The local maximum at the inner edge is
related to the circularization pattern seen in Fig. 4. The third panel
shows density-weighted temperature, 7. The temperature inside of
the atmosphere approaches 108 K, and also follows a power law at
the inner edge. We also measured the growth rate of the temperature
on the surface of the NS and found that it grows with a () oc '
dependence. The last panel shows the density weighted ratio of
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Figure 4. Here, we show the time-averaged poloidal velocity flow structure of the black hole-like simulation (upper left) and reflective simulation (upper
right). The magnitude of the poloidal velocity (uP°! = \/u’u, + u%uy) is given by the colour map. The streamlines follow the poloidal velocity vectors for all
plots in the figure. The middle two images show the mass accretion rate in the poloidal plane (Mpol = 272 sin6 puP®") for BHRUN simulation (middle left) and
NsRUN (middle right). The two bottom images are the same as for the middle images, except for a larger range of r and z. We show a contour of Be = 0 in green
and in white we show the last streamline which originates from the Be = 0 surface. The shaded region below, we exclude from our analysis.

angular velocity to the Keplerian angular velocity, $2/Q2,. We can
also see the angular velocity transition towards zero as observed in
Fig. 3. The accretion disc is mildly sub-Keplerian.

4.2 Outflow and luminosities

Accurate measurements of the outflow from black hole and NS
accretion discs are important for estimating feedback on the sur-

rounding media of these systems. We measure the radiative and
kinetic luminosities of our accretion flows as well as the mass out-
flow rates. We purposely chose a very large simulation domain so
that we can measure these quantities out to larger radii, however,
these measurements are meaningless without indication that the
simulation has reached some sort of equilibrium. Typically, this is
measured by computing the viscous time of time averaged data over
a particular interval, and seeing at which radius the viscous time
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Figure 5. Here, we show the time-averaged structure of the BHRUN (top left) and the NsRUN (top right). Expanded views of the simulations are shown in the
bottom panels. The colour map shows density. The coloured contours correspond to optical depth to scattering. From green to red, the values correspond to
Tsca = 0.01, 0.1, 1, 10, 100. The while line shows 74, = 1. The striped red, purple, and yellow lines show contours of Be = —0.05, 0, 0.05 respectively. The
dashed black line shows the rms scale height, 4. We have also darkened the region contained by the last streamline to originate from the Be = 0 surface.

is equal the length of that time interval (Narayan et al. 2012). This
roughly corresponds to about r = 80r, for our simulations aver-
aged over time interval #4, evidence of which can be seen in Fig. 6,
where the averaged radial velocity changes sign at about 100 r,, an
indication that inflow equilibrium has not been reached passed this
radius. This means that we can trust the results of our simulation
inside radius r = 80r,.

Outside 80r,, however, we can still trust the results of the outflow,
as long as it is causally connected to the converged region inside
radius r = 80r,. Because the velocity of the outflow is much higher
than that of the inflow, this corresponds to much larger radii where
we can reliably measure the outflow. To quantify this, we measure
the density weighted average velocity, «" as a function of radius.
We take the average over the 6 coordinate only for cells with Be
> (0 to reasonably track outflowing gas. Here, Be is the relativistic
Bernoulli number,

T' 4+ R+ pu'
pu' '
In steady state, Be is conserved along streamlines and gas with
positive Be is energetic enough to escape to infinity, and so it is a

reasonable parameter to define the outflow. Separating the outflow
from the disc flow is not precise, so one should not put too much
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influence on the Bernoulli parameter. For example, we can see from
Fig. 4 that the outflow from near the NS transition layer appears
to change Bernoulli parameter. We have investigated this further
and found that when looking at the non-time-averaged data in this
particular region, the flow does not appear to be steady, and the Be
= O surface is highly variable. For steady flows (such as the outflow
at larger radii), the Bernoulli parameter should still be appropriate
for calculating the causally connected radius, 7.

We use time-averaged data for the time interval, #4, from 40 000 7,
to 80000 ¢,, and multiply the time and 6-averaged velocity by the
duration of the time interval, At =40000¢, to find the causally
connected radius, 7, for an outflow of that velocity. This assumes
a constant velocity along the outflowing trajectory, however, since
velocity tends to decrease with radius, the causally connected radius
we find is a lower limit. Then, as long as the causally connected
radius is larger than the radius where we are measuring the velocity,
we can believe the results of the outflow. A plot of r. is shown in
Fig. 7. We can see that the outflow of BHRUN is reliable throughout
the entire outflow region excluding the region behind the initial
torus shown in Fig. 4. For NsRuN, it is reliable to about r ~ 4000r,.
It is important to note that this analysis does not take into account
changes in the nature of the outflow with time, but only that the
outflow is causally connected to the central region of the simulation.
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Figure 6. Here, we show radial profiles of surface density, X, density-weighted, §-averaged inflow velocity, the density-weighted, 6-averaged temperature,
and the density-weighted, 6-averaged ratio of angular momentum to the Keplerian angular momentum. The data is time averaged over the range, 74 from
400001 to 80000, and -averaged over one scale height, /. Plots are shown for the both BHrUN (blue) and NsruN (orange). We also plot in green the same
quantities from NsRUN time averaged over the interval 5 from 80 000 £, to 160 000 7.
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Figure 7. Here, we demonstrate the convergence of the outflow by plotting
the radius causally connected to the inner region of the disc, 7, as a function
of the radius at which measure the velocity, r. For r.c > r, we can reliably
measure the outflow of the simulation. For reference, r = r is shown by the
black dashed line. As with Fig. 6, blue corresponds to BHRUN and orange to
NSRUN. If rec > r, then the gas had enough time to reach radius r.

An additional issue which must be addressed is contamination of
the results by the initial condition. Our initial condition is an equilib-
rium torus where the total pressure has been distributed between gas
and radiation. The torus is constructed assuming radiation pressure
domination, which implies an adiabatic index, y = 4/3. However,
the effective adiabatic index depends on the particular mix of gas
and radiation at a particular position, and so does not everywhere
equal 4/3, especially in cooler parts of the torus. For this reason,
the torus is not in perfect hydrostatic equilibrium. There is also a
certain amount of gas that is blown off of the outer edges of the torus
due to radiation pressure. However, the whole torus was constructed
with Be < 0, and so due to the lack of dissipation or viscosity in
the regions in the outer parts of the torus where the MRI has yet
to develop, there is a reasonable expectation that Be remains less
than zero. Therefore, by measuring the outflowing quantities over
regions with Be > 0, we are reasonably screening the contamination
by the initial condition. Additionally, this region overlaps signifi-
cantly with the area excluded by the last streamline from the Be = 0
surface. We can see which region this corresponds to by examining
the purple dashed line in Fig. 5. This region is relatively small com-
pared to the computational domain of the simulation. A more robust
diagnostic would be for example, evolving a tracer along with the
simulation to track the evolution of gas. Then, it would be possi-
ble to check whether the gas originated from the inner, converged
regions of the simulations or not.

In Fig. 8, we show the angular distribution of radiative flux, F"
= R’,, as a function of #. The units of the flux are given in the
inferred isotropic luminosity by multiplying by 47>, We plot the
flux at four different radii, 50ry, 500rg, 2000r,, and 4000r,. We
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Figure 8. Here, we show the radial distribution of the flux in units of the apparent isotropic luminosity, 477 72 F'/Lgg4, as a function of the line of sight for BHRUN
(left) and NsruN (right). Each line corresponds to the observable flux at a particular radius shown in the legend in units of ry. The faded regions correspond to

areas where the scattering optical depth is greater than one.

have emphasized the regions where the gas is optically thin, as
the radiation in the optically thick regions is not expected to reach
the observer. The optically thick regions should not be completely
ignored, however, it is still possible for the outflowing matter to add
or subtract from the radiation field, and so it is difficult to say what
the distribution of radiation will look like at infinity. The BHRUN
behaves as expected. The optically thin funnel region produces
locally super-Eddington fluxes. We can see that the radiation is
highly collimated, even at large radii. The intensity of radiation
increases with radius at lower radii, and decreases at larger radii, as
the disc and outflowing gas emit and absorb radiation. NSRUN is more
complicated, however. Due to the thick outflows the photosphere
is pushed nearly to the edge of the simulation domain. Only at
very large radii can we measure a flux of locally about Eddington.
Larger accretion rates may be required to reach higher luminosities,
although it is hard to say whether or not the increase in outflowing
gas will cancel any increase in luminosity. Indeed, in the case of
black holes, it is well known that at super-Eddington accretion rates,
an increase in the accretion rates corresponds to a decrease in the
radiative efficiency so that the luminosity scales logarithmically,
L o< log(1 4+ M /Mggg) (Shakura & Sunyaev 1973). It may even
be interesting to try smaller accretion rates in case the outflow
scales differently than the luminosity in the presence of a reflective
boundary condition.

Besides observational properties, the implications of black hole
feedback play an important role in the astrophysics of star formation,
star clusters, and galaxies. In Fig. 9, we show the luminosity of
kinetic energy, defined as,

Oout
Lis =2 x 27 / e+ Vgwpu’ /=g d6, (13)
0

where 60, is the angle at which Be = 0. By integrating over positive
Be, we are choosing only the gas which is energetic enough to reach
infinity. The extra factor of two reflects the fact that we include the
contribution from both sides of the equatorial plane. In the non-
relativistic limit, the integrand approaches 1/2pv?v’", where v’ is
the three-velocity, v? is the square of the three-velocity, and v" is
the radial component of the three-velocity. NSRUN shows a large
amount of material ejected into the surroundings of the NS star
environment. A large amount of it remains bound and so only at
around r = 1007, is O,y > 0. NSRUN everywhere has a less energetic
outflow than BHRUN, levelling off at Lxg ~ 0.4Lgqq. For BHRUN, the
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Figure 9. Here, we plot the outflowing luminosity of kinetic energy Lkg, as
a function of radius. The kinetic energy flux is integrated over the outflowing
region defined by positive relativistic Bernoulli number, Be. BHRUN is shown
in blue, and NSRUN is shown in orange averaged over time interval, 74, and
green averaged over f5.

gas is energetic enough to escape to infinity in the funnel region
even at radii below the stagnation radius, however the velocity
vector is directed inward and so the flux of kinetic energy is into the
inner boundary, thus the transition to negative values in the kinetic
luminosity.

The total radiative output of the simulation is difficult to mea-
sure directly, especially for optically thick flows. Radiation and gas
can still exchange energy even after the gas has left the simulation
domain. We chose to run our simulations with a very large outer
radius, so that the photosphere is still contained in the simulation.
This allows us to measure the amount of radiative energy outflow-
ing from optically thin and outflowing regions. Radiation flowing
through optically thin regions is expected to escape to infinity, and
so is an effective lower limit on the total radiative output. We define
the optically thin region by the angle at a particular radius where
the radial scattering optical depth is equal to 1. For each radius, we
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Figure 10. Radiative luminosities are shown for BHRUN (blue) and NSRUN
(orange) averaged over the time period #4. The last time period for NSRUN, #5
is shown in green. The solid lines correspond to the luminosity integrated
over angles that are optically thin, L, while the dashed lines show the
luminosity integrated over the angles with positive Be, Loy.

integrate the radial radiative flux over the optically thin region,

Othin
Lpin =2 X 27{/ —R",\/—gdob. (14)
0

A reasonable upper limit of the radiative luminosity, is the integral
of F" over the region of Be > 0, Ly, as in the calculation of Lgg.
This gas is energetic enough to reach infinity, and so it is possible for
the outflowing gas to eventually release its trapped photons. Note
that it is possible for this gas to produce additional photons, but this
is not thought to contribute significantly to the radiative luminosity,
S0 Loy 1s not a strict upper limit. The outflowing luminosity is then
given as,

Bout
Low =2 x 2:1/ —R',/—gd. (15)
0

The outflowing and optically thin radiative luminosities are
shown in Fig. 10. In general, BHRUN shows about 2—3 times as high
luminosity as NSRUN. As shown in Figs 1 and 2, NsrRUN produces a
much larger amount of radiation energy. However, the vast majority
is trapped in the optically thick outflow and transition layer. We
also observe a general decrease in luminosity at radii larger than
about 300r,. This is because of radiation flowing into the excluded
regions behind the initial torus. The optical depth of this region is
low and so radiation can escape from the outflow into this region.
It is hard to say how the radiation would behave in this region in
reality, it would depend on the extent and thickness of the accretion
disc. We do not seem much change in the radiative luminosity over
the #5 time interval.

Super-Eddington accretion flows are known to have strong radi-
ation driven outflows (Ohsuga et al. 2005; Hashizume et al. 2015;
Fiacconi et al. 2017). We can measure this by examining the accre-
tion rate in a few different ways. First in the top panel of Fig. 11, we
measure the total (net) mass accretion rate as a function of radius,

Mtot:27'r/ —pu’\/—gdb. (16)
0

BHRUN, which is shown in blue, gives a flat accretion rate out to
about 7 < 50r,, which roughly corresponds to the region where the
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Figure 11. Top: Here, we show the total accretion rate, Mo, of BHRUN (blue)
and NSRUN (orange) computed from data averaged over the time interval, 74.
In green, we show data from NsRUN time averaged over the interval fs.
Bottom: Here, we plot the mass accretion rate of the inflow, M;,, again for
BHRUN and NSRUN from #4 and #5. We include two definitions of the inflow.
The first corresponds to the solid lines which are defined as the integral over
all cells with negative u’, Mm‘ur. The dashed line shows the the integral
over all cells with negative Be, Min,Be. A power law fit to Min,ur for NSRUN
from #4 is shown in black. The solid black line shows the radii over which
the fit was performed, the dashed part is an extension of the power law for
reference.

simulation has achieved steady state. NSRUN, shown in orange, is also
nearly flat for a small region between 207, and 507,. At low radii the
simulation is accumulating mass, which corresponds to a non-flat
slope of M. In general, M, is lower for NSRUN than for BHRUN.
This is not due to a lower accretion rate in the disc, but due to the
fact that the gas that is normally lost through the inner boundary of
BHRUN either accumulates in the transition layer where it is recycled
into the inner accretion flow, or is ejected into the outflow, the latter
of which contributes to a lower value of M,,,. We also show M
for NSRUN averaged over the time interval #s. We can see that the
flat region indicating an accretion disc in steady state is no longer
present. This is due to two effects. The first is the transition layer
increasing in radius. The second is due to the fact that the outflows
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are increasing at higher radii and so the total accretion rate over the
whole sphere decreases.

The second panel of Fig. 11 shows the inflowing accretion rate
as measured in two different ways. The first is a more naive mea-
surement of the inflow accretion rate, (17)

My, = 27t/ —pu’/—gdo, (17)
u” <0

where we simply sum over individually inflowing cells. These are
the solid curves in the second panel, and in general, BHRUN and
NSRUN agree with each other outside of the NS transition layer.
This indicates that they are accreting at the same accretion rate,
the fundamental scale of accretion, and we can expect the same
behaviour from their accretion discs. The inflowing accretion rate,
M., is a good measure to determine the mass accretion rate in
the disc when most or all of the disc turbulence is averaged out,
then all of the gas in the disc should have #" < 0, and all of the
gas in the outflow should have u” > 0. This is not the case for the
data we show except at small radii. For flows where the turbulence
is not fully averaged out, Min,ur is more of an upper limit. A super-
Eddington accretion flow is expected to have an accretion rate that
increases linearly with r (Shakura & Sunyaev 1973), and we can
see from the black line, that this dependence is nearly reproduced
in NSRUN. We obtain My, ,» oc r'2.

We can still see a large amount of gas flowing through the NSRUN
accretion disc for the 75 interval with nearly the same slope as for #4,
although at slightly lower values. This is likely due to the structure
of the initial torus, which over very long periods of time, does not
supply the accretion disc with gas at the same rate, slightly dropping
with time.

The dashed lines correspond to the integral of the total mass flux
over the regions with negative Bernoulli number, (18)

My . = 271/ —pu’/—gdh. (18)
Be<0

Most of the gas at lower radii has negative Bernoulli number,
whether or not it is part of the disc or the outflow. From Fig. 4,
we can see streamlines that are initially outflowing with negative
Be which turn around and return to the disc mid-plane, but we can
also see streamlines which seem to change from negative to positive
Be, and which continue to flow outwards. It is important to note that
Be is only conserved along streamlines for steady flows. Closer to
the disc, the flow is very much non-steady, and so the streamlines do
not always reproduce the gas trajectory. For this reason, one must be
cautious when using Be as a diagnostic for outflow. It is necessary
to know something about the flow, and so we put more weight on Be
farther from the disc where the flow is more steady. In this way, Be
is more useful as a diagnostic for outflows at larger radii. We still in-
clude plots of M;, p. for completeness, although they should mostly
match M,y at lower radii. The departure of M, g, from M, .+ for
BHRUN is also evident from the top-left panel of Fig. 4, where there
is gas which has positive Be but is directed into the black hole.
Fig. 12 shows the outflowing accretion rate, measured in the same
way as the inflowing accretion rate, My, -, but with opposite sign,
Mouwr. Again, we show BHRUN in blue and NSRUN in orange. We also
plotin green the mass outflow rate for NsRUN over the last interval, #5
from 80 0001, to 160 000z, which was not run for the BHRUN, because
it is more computationally demanding. At lower radii, Moy, more
or less follows Mm,,,r, this is because, in inflow equilibrium, the
difference between them, M, should be constant. As the accretion
rate drops with a decrease in radius, the outflow rate must also drop
so that no gas can accumulate at any radius, at least for BHRUN. We
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Figure 12. Here, we show the outflowing mass accretion rate, Mou;. Moug
is given by the solid lines and Moy ge is given by the dashed lines. Blue lines
correspond to the BHRUN and orange to NsRUN both using time-averaged data
from the interval #4. The green lines shows data from NSRUN time-averaged
over the interval, 5.

have also de-emphasized M(,ul,,,r at radii larger than 100r,, where
the simulation has not reached inflow equilibrium.

For measuring the mass outflow that is expected to reach infin-
ity, the relevant quantity is Mou[,Be, the total mass outflow rate in
the positive energy region, the region which is separate from the
accretion disc. These are the dashed curves in Fig. 12. Moy ge» is
calculated in the same way as, Min_ge except for Be > 0. In general,
NSRUN shows nearly an order of magnitude larger outflow rate than
BHRUN at its peak when measured over the same time period. This
is why the outflows are so optically thick. The maximum outflow-
ing accretion rate for NSRUN nearly matches M;, at the edge of the
transition layer. If the outflow were to converge to this value (~200
Liaa/c?) at all radii 21000r,, then this would be a strong indica-
tion that all the inflowing matter is eventually ejected. We do not
observe this however, and moreover we observe that mass is still
accumulating at the inner edge. While the simulation was run for a
long time, around (160 000¢,), the transition layer did not seem to
reach a steady state. We can see the outflow at large radii become
more flat for 75, this also indicates that the outflow while apparently
increasing with time, may slowly be approaching at least a quasi-
steady state, and that outflows which are the same magnitude as the
accretion rate in the disc can be expected for long periods of time.

5 DISCUSSION

We have run two long duration GRRMHD simulations, one of
accretion onto a Schwarzschild black hole and one onto a NS (non-
magnetized, non-spinning). Our black hole simulation, BHRUN, is
used as a baseline to compare against the NS simulation for two
reasons. One, it is very similar to the inflow boundary conditions
used in many previous simulations. Secondly, it is a simple, well-
studied system, without an artificial boundary condition, and is
directly comparable to other previous simulations of its type and the
model more closely matches the behaviour of the physical object it
represents. It is immediately apparent that the simulations are quite
different. The differences in the accretion disc structure are apparent
inside radius r = 30r,, where the flow in NSRUN begins to change
into the transition layer. It is then inferred that the differences in
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the outflow are due to the various physical processes occurring in
the inner region of the simulation. We observed from Fig. 3 that the
transition layer increases with size as time goes on.

The simulation was run for 120000 #,, which only corresponds
to 1 s of physical time, which is only one full pulsation for the
pulsation periods observed in pulsating ULX systems. These ob-
servations were integrated over kilosecond time scales. The point
being that even though our simulations are run for a long time
(when compared to other GRRMHD simulations), they would have
to be run much longer in order to capture the effects of the varying
radiation source of a rotating magnetized star. Such long duration
simulations are likely out of the question for 3D simulations, likely
still difficult for our 2D simulations, and impossible for 2D sim-
ulations without any sort of dynamo. Nonetheless, we are free to
speculate.

We observe that the radius of the outer boundary of the transi-
tion layer increases with a time dependence that is well described
by a %85 power law, and we have no reason not to expect this de-
pendence to continue until either the mass supply is quenched, the
radiation pressure becomes too strong, or the central density and
temperature become large enough that some other cooling mech-
anism becomes effective, e.g., neutrino cooling or photon cooling
through outflows. The central temperature grows with a 1"+ power
law, and so neutrino cooling, which may become relevant around
10° K may need to be considered (depending on the central density)
after a few (4-8) times the simulation length. We expect the other
processes to also take much longer than a few times the current
simulation time, so it would be interesting to run an even longer
duration simulation, in order to study the time evolution of the
outflow and luminosity as the simulation evolves. In our case, the
length of our simulation was chosen so that the outflow would be
causally connected to the inflow equilibrium region of the inner
simulation to radii past the photosphere. A non-physical limitation
would be the transition layer growing faster than inflow equilibrium.
A potential solution would be to run a black hole like simulation
for long time and then to restart the simulation with a hard inner
boundary.

Our main conclusion from our work is that the presence of a hard,
non-rotating surface alone is likely not sufficient to produce enough
radiation that can escape to infinity to explain the luminosities ob-
served in ULX sources. The large amount of ejected gas not only
obscures the innermost emitting regions, but also decollimates the
radiation, further reducing the observed luminosity. Thus, it is vital
that we consider the effects of magnetic fields. This was done by
Takahashi & Ohsuga (2017), who found a bolometric luminosity to
be about an order of magnitude larger than ours, the simulation is
short, however, f,, = 15 000t,, so more work would be required
to study the effect of a large amount of gas being accreted onto the
magnetic field.

It would be interesting to study the case of accretion onto a
non-magnetized NS with a different initial condition for the disc
magnetic field. Our initial condition contains magnetic field loops
of alternating polarity, and reconnection is allowed on a numerical
level. Thus, no significant amount of magnetic flux accumulates
on the inner edge of the simulation, indeed the magnetic pressure
is several order of magnitude lower than the radiation pressure in
the transition layer. Running a simulation with only one magnetic
field loop, which normally leads to accretion in the magnetically
arrested disc state in black hole simulations (McKinney, Dai &
Avara 2015; Narayan, Sadowski & Soria 2017), would likely also
lead to a build-up of magnetic flux in the transition layer which
could be dynamically important.
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One interesting application of our study could be an extension
to supersoft sources (SSS) (Long, Helfand & Grabelsky 1981; van
den Heuvel et al. 1992) and ultraluminous supersoft sources (ULS)
(Urquhart & Soria 2016). ULSs are characterized by peak temper-
atures of around 10° K, with bolometric luminosities at a few times
10* erg s~! and photospheres at radii of around 10* km. SSSs are
classified similarly with lower temperatures (~10° K, ~10° K) and
luminosities (~10% erg s=!, ~10% erg s7!). The effective temper-
ature of NSRUN can be computed by measuring the radiative energy
density around the photosphere which is on average around a few
times 10° K. The radius of the photosphere is around 5000 km.
These features are indicative of ULS sources, although the bolo-
metric luminosity is about an order of magnitude too low, closer to
the higher end for SSSs. While SSSs can be well explained by nu-
clear burning on the surface of a white dwarf (van den Heuvel et al.
1992), ULSs, like ULXs have been harder to model. It would be
interesting in future work to do post-processing of NSRUN to generate
spectra to see if they match any of the more specific characteristics
of ULSs or SSSs.

5.1 Comparision to Takahashi, Mineshige & Ohsuga (2018)

After this work was completed, we became aware of an important
publication by Takahashi et al. (2018) (TMOI18), who obtained
similar results to ours by running a shorter simulation (7000 t,),
demonstrating the feasibility of super-Eddington accretion onto a
non-magnetized NS. It is vital that we make a comparison to the
work by TMO18, as the simulations they have run should be directly
comparable to ours. TMO18 have performed two simulations, one
onto a black hole, and one onto a reflective inner boundary as in
our work. Both codes are GRRMHD solvers with M, closure. The
code used is the same as used by the authors in their previous
work. Both our simulations and those of TM018 show a power-
law behaviour at the inner edge of the simulation. TMO18 report a
significant increase in the rate of ejected mass over their black hole
simulation. Indeed, we also infer a roughly 10 times increase in the
mass outflow rate for NsRUN over BHRUN. The authors also report
an increase in the radius of the photosphere over the black hole
case. We find a much larger increase in the photosphere however,
reaching out to a couple thousand r,. This is likely due to the length
of our simulations, which are run for more than ten times the length
of the simulations in TMO18, and so we believe we are able to
make a more accurate statement about the mass outflow to larger
radii, and about the radiative luminosity, which TMO18 does not
address.

One interesting difference is found in the strong change in the
angular velocity in the transition layer, seen in our simulations.
TMO18 show the centripetal force, which can be used as a proxy
for  (indeed, in the Newtonian case it is proportional to ).
TMO18 show that the centripetal force transitions from super-
Keplerian to about half Keplerian. This contrasts against our sim-
ulations where 2 transitions to practically zero at the inner edge
of the simulation, even at early times. This difference could be
due to differences in the inner boundary condition for u?. When
we average our data over the same time interval as is described in
TMOI18 (3000-5000 7,) and examine 2/Q, we see that it transi-
tions from unity at about 10 r, to 0.3 at the stellar surface (5ry).
This corresponds to the same range of radii over which the cen-
tripetal force of TMO108 transitions to about 0.6 times the Ke-
plerian value which would indicate an 2/Qx ~ 0.8, more than
twice the angular velocity ratio of our simulation. This indicates
that we have a stronger torque at the inner edge of our simulation,
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and so it is probably easier for gas to accumulate in the transition
layer. It will be beneficial in the future to study angular momen-
tum transfer through the inner boundary for different boundary
conditions.

5.2 Caveats

It is important to stress that our simulations are a first attempt at
measuring the effects of a hard surface in the context of a global, ra-
diative, MRI-driven, super-Eddington accretion flow. More physics
is planned in future implementations. Indeed, there are a number of
issues that must be addressed before we may consider these results
truly robust.

First, our simulations are performed in 2D axisymmetry.
Sadowski & Narayan (2016) have shown that non-axisymmetric
effects can lead to a lower luminosity accretion flow around a black
hole. Since the luminosities we measured were on the low end of
what is expected for ULX objects, we cannot be sure if a 3D simula-
tion would be bright enough. It is possible that this difference would
not occur in the presence of hard surface, but a fully 3D simulation
would be required to confirm.

Secondly, we have neglected the effects of rotation. Accretion
onto a rapidly rotating star will release less energy than accretion
onto a stationary star. The gas will also be less bound however.
For a 1 s rotational period, the effects of rotation at the NS surface
should be negligible; however, the acceleration of gravity scales as
r~2 while centripetal acceleration increases with r. At larger radii,
this may become relevant if the accreted atmosphere rotates nearly
uniformly.

6 SUMMARY

We have found that a reflective, non-rotating boundary at the inner
edge of an accretion disc simulation has a significant effect on the
behaviour and structure of the inner disc as well as its emission
and outflows. We observe large amounts of gas accumulating on
the inner boundary in a transition layer, where the angular velocity
transitions from its Keplerian value to near zero. We also found
lower rates in the outflow of kinetic energy over the black hole
case. However, we did measure larger mass outflow rates, affecting
the release of radiation to the observer. In fact, the hard surface
of a non-magnetized NS leads to lower radiative luminosities in
super-Eddington flows relative to black holes, and with radiation
decollimated to the point where they are not likely to explain even
the lowest luminosity ULXs, although they may be applicable to
ULSs or SSSs. This work is a first step in a larger plan to study
accretion processes around neutron stars. Further work includes
studying different accretion rates, including rotation, and eventually
the addition of stellar magnetic fields.

ACKNOWLEDGEMENTS

The first author thanks Ramesh Narayan, Maciek Wielgus, and
Jean-Pierre Lasota for advice and illuminating conversations. Re-
search supported in part by the Polish National Science Centre
grants 2013/08/A/ST9/00795 and 2017/27/N/ST9/00992. Compu-
tations in this work were performed on the Prometheus machine,
part of the PLGrid infrastructure.

REFERENCES

Alme M. L., Wilson J. R., 1973, ApJ, 186, 1015
Bachetti M. et al., 2014, Nature, 514, 202

MNRAS 479, 3936-3951 (2018)

Balbus S. A., Hawley J. F.,, 1991, ApJ, 376, 214

Basko M. M., Sunyaev R. A., 1976, MNRAS, 175, 395

Bradshaw C. F,, Fomalont E. B., Geldzahler B. J., 1999, ApJ, 512, L121

Cemeljié M., Shang H., Chiang T.-Y., 2013, ApJ, 768, 5

Chamel N., Haensel P., 2008, Living Rev. Relativ., 11, 10

Colbert E. J. M., Mushotzky R. F,, 1999, ApJ, 519, 89

Dhang P., Sharma P., Mukhopadhyay B., 2016, MNRAS, 461, 2426

Eksi K. Y., Andac 1. C., Cikintoglu S., Gengali A. A., Giingér C., Oztekin
F., 2015, MNRAS, 448, L40

El Mellah I, Casse E., 2015, MNRAS, 454, 2657

Fiacconi D., Pinto C., Walton D. J., Fabian A. C., 2017, MNRAS, 469,
L99

Fiirst . et al., 2016, ApJ, 831, L14

Gammie C. F., McKinney J. C., T6th G., 2003, ApJ, 589, 444

Hashizume K., Ohsuga K., Kawashima T., Tanaka M., 2015, PASJ, 67, 58

Inogamov N. A., Sunyaev R. A., 1999, Astron. Lett., 25, 269

Israel G. L. et al., 2017a, Science, 355, 817

Israel G. L. etal., 2017b, MNRAS, 466, L48

Jiang Y.-F., Stone J. M., Davis S. W., 2014, Apl, 796, 106

Kawashima T., Mineshige S., Ohsuga K., Ogawa T., 2016, PASJ, 68, 83

King A. R., Davies M. B., Ward M. J., Fabbiano G., Elvis M., 2001, ApJ,
552, L109

King A., Lasota J.-P., Kluzniak W., 2017, MNRAS, 468, L59

Kluzniak W., Lasota J.-P., 2015, MNRAS, 448, 143

Kluzniak W., Wagoner R. V., 1985, ApJ, 297, 548

Kluzniak W., Wilson J. R., 1991, ApJ, 372, L87

Koliopanos F., Vasilopoulos G., Godet O., Bachetti M., Webb N. A., Barret
D., 2017, A&A, 608, A47

Komissarov S. S., 1999, MNRAS, 303, 343

Long K. S., Helfand D. J., Grabelsky D. A., 1981, AplJ, 248, 925

McKinney J. C., Dai L., Avara M. J., 2015, MNRAS, 454, L6

Mukhopadhyay B., Fang L. Z., 2002, Int. J. Mod. Phys. D, 11, 1305

Mushtukov A. A., Suleimanov V. F,, Tsygankov S. S., Poutanen J., 2015a,
MNRAS, 447, 1847

Mushtukov A. A., Suleimanov V. E,, Tsygankov S. S., Poutanen J., 2015b,
MNRAS, 454, 2539

Mushtukov A. A., Suleimanov V. F,, Tsygankov S. S., Ingram A., 2017,
MNRAS, 467, 1202

Mushtukov A. A., Verhagen P. A., Tsygankov S. S., van der Klis M., Lu-
tovinov A. A., Larchenkova T. 1., 2018, MNRAS, 474, 5425

Narayan R., Yi L., 1995, ApJ, 452,710

Narayan R., Garcia M. R., McClintock J. E., 1997, ApJ, 478, L79

Narayan R., Sadowski A., Penna R. F., Kulkarni A. K., 2012, MNRAS, 426,
3241

Narayan R., Sadowski A., Soria R., 2017, MNRAS, 469, 2997

Ogawa T., Mineshige S., Kawashima T., Ohsuga K., Hashizume K., 2017,
PASIJ, 69, 33

Ohsuga K., Mori M., Nakamoto T., Mineshige S., 2005, ApJ, 628, 368

Parfrey K., Tchekhovskoy A., 2017, ApJ, 851, L34

Penna R. F.,, Kulkarni A., Narayan R., 2013, A&A, 559, A116

Pintore F., Zampieri L., Stella L., Wolter A., Mereghetti S., Israel G. L.,
2017, ApJ, 836, 113

Popham R., Sunyaev R., 2001, ApJ, 547, 355

Revnivtsev M., Mereghetti S., 2015, Space Sci. Rev., 191, 293

Romanova M. M., Ustyugova G. V., Koldoba A. V., Lovelace R. V. E., 2012,
MNRAS, 421, 63

Shakura N. L., Sunyaev R. A., 1973, A&A, 24, 337

Shklovsky I. S., 1967, AplJ, 148, L1

Sibgatullin N. R., Sunyaev R. A., 2000, Astron. Lett., 26, 772

Syunyaev R. A., Shakura N. I., 1986, Sov. Astron. Lett., 12, 117

Sadowski A., Narayan R., 2015, MNRAS, 454, 2372

Sadowski A., Narayan R., 2016, MNRAS, 456, 3929

Sadowski A., Narayan R., Tchekhovskoy A., Zhu Y., 2013, MNRAS, 429,
3533

Sadowski A., Narayan R., Tchekhovskoy A., Abarca D., Zhu Y., McKinney
J. C.,, 2015, MNRAS, 447, 49

Takahashi H. R., Ohsuga K., 2017, ApJ, 845, L9

Takahashi H. R., Mineshige S., Ohsuga K., 2018, ApJ, 853, 45

020Z AIN 91 Uo Jasn Syd Jo anus) [esiwouoisy snoluiado)) snejodiN A 96£8€0S/9E6E/E/6. 10BNSe-aoILe/Seluw/wod dno olwapeose//:sdiy Woll papeojumo(]



Toropina O. D., Romanova M. M., Lovelace R. V. E., 2012, MNRAS, 420,
810

Urquhart R., Soria R., 2016, MNRAS, 456, 1859

van den Heuvel E. P. J., Bhattacharya D., Nomoto K., Rappaport S. A., 1992,
A&A, 262,97

Walton D. J. et al., 2018, MNRAS, 473, 4360

Accretion onto NSs 3951

Wiktorowicz G., Sobolewska M., Lasota J.-P., Belczynski K., 2017, ApJ,
846, 17
Yang X.-H., Yuan F., Ohsuga K., Bu D.-F,, 2014, ApJ, 780, 79

This paper has been typeset from a TEX/IATEX file prepared by the author.

MNRAS 479, 3936-3951 (2018)

020Z AIN 91 Uo Jasn Syd Jo anus) [esiwouoisy snoluiado)) snejodiN A 96£8€0S/9E6E/E/6. 10BNSe-aoILe/Seluw/wod dno olwapeose//:sdiy Woll papeojumo(]






4 Paper 3: Beamed emission from a neutron-star
ULX in a GRRMHD simulation

In this letter (Abarca et al. 2021), I run a 2D axisymmetric GRRMHD simulation of super-Eddington
accretion onto a neutron star with a 2 x 101° G dipolar magnetic field. In order to handle the large
magnetizations present in the magnetosphere I implement the method from Parfrey and Tchekhovskoy
(2017) and adapt it to work with GRRMHD simulations. I also use a boundary condition which is
meant to model gas hitting the surface, becoming shocked and releasing a fraction (in this case 0.75) of
its kinetic energy as outflowing radiation.

The accretion flow forms a disk with an accretion rate of ~ 20 M which is truncated at about
r ~ 10 GM c~2 by the magnetic field. At this point the flow is driven along magnetic field lines forming
accretion columns. As the gas hits the inner boundary it slows down due to the boundary condition
and becomes shocked. A large amount of radiation is released at the base of the column and this
radiation becomes collimated by the outflowing gas so that when it reaches the observer it appears
to be originating form a source many times brighter. I measure peak isotropic luminosities about
140 Lgqq while our lower limit for the actual luminosity is around 2.5 Lgqq4, implying a maximum
beaming factor of b ~ 1/50. This is quite a large value and due to the limitations of the simulation
there are reasons to believe that the actually inferred isotropic luminosity maybe be a few times lower,
but even taking that into account, I have shown that an accreting neutron star with a relatively weak

field can emit beamed emission and should be a good candidate for a ULX.
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Abstract

We perform a global 2.5D general-relativistic radiation magnetohydrodynamic simulation of supercritical accretion
onto a neutron star with a 2 x 10'® G dipolar magnetic field, as a model of a neutron-star-powered ultraluminous
X-ray source (ULX). We compute a lower limit on the total luminosity of ~2.5 Lgqq, and find the radiation to be
highly beamed by the accretion disk outflows. The apparent isotropic luminosity, which is a function of the
viewing angle, reaches a maximum above 100 Lgg4q4, consistent with the luminosities observed in ULXSs.

Unified Astronomy Thesaurus concepts: Ultraluminous x-ray sources (2164); Magnetohydrodynamical simulations

(1966); Neutron stars (1108)

1. Introduction

Ultraluminous X-ray sources (ULXs) are extragalactic, non-
active-galactic-nucleus X-ray sources with luminosities exceeding
10 ergs™" (Kaaret et al. 2017). Observations, in a handful of
ULXs, of coherent pulsations of ~1 s periodicities (Trudolyubov
2008; Bachetti et al. 2014; Motch et al. 2014; Fiirst et al. 2016;
Israel et al. 2017a, 2017b; Townsend et al. 2017; Tsygankov et al.
2017; Brightman et al. 2018; Carpano et al. 2018; Doroshenko
et al. 2018; Fiirst et al. 2018; Heida et al. 2019; Chandra et al.
2020) have shown that at least some of these sources are powered
by slowly rotating neutron stars accreting above their critical
limits, Mgqq = nLgaq /c2, where n ~ 0.2 is the binding energy per
unit mass at the surface of the neutron star (Syunyaev & Shakura
1986) and Lggq = 47GMm,,c /oris the Eddington luminosity of an
object with mass M.

For low accretion rates 7 is also the expected radiative
efficiency, and the luminosity is proportional to the mass
accretion rate, L/Lpgq = M/Mgqq. However, due to their
extremely large optical depths, accretion disks with M > Mgqq
can no longer cool efficiently. The accretion flow traps photons
and the advection of radiation becomes the primary mode of
energy transport in the disk (Begelman 1978; Abramowicz et al.
1988; Sadowski & Narayan 2016; Czerny 2019). The large
concentration of photons launches a radiation-pressure-driven
outflow, which originates at the radius where the radiation flux
through the surface of the disk becomes super-Eddington
(Shakura & Sunyaev 1973). The outflow extends from this
radius (referred to as the spherization radius) down to the inner
edge of the accretion disk. Because of advection, the value of the
spherization radius will differ somewhat from its classic thin-
disk value (Shakura & Sunyaev 1973). In fact, a substantial
fraction of the photons in the radiation-pressure-dominated inner
disk will be advected to the vicinity of the stellar surface and
released there. How it escapes to infinity is the major focus of
this Letter.

King et al. (2001) suggested long before the first pulsating
ULXs were observed that the outflows from a super-Eddington
disk could collimate the emission released near the compact
object, in a manner similar to the collimation predicted by the
thick disk model of the Warsaw group (Abramowicz et al. 1978;
Paczyriski & Wiita 1980). The system would then appear to be
very bright when viewed face-on, and the inferred isotropic

luminosity Lis, = F/ (47d®), where F is the radiation flux
measured by the observer and d is the distance to the source,
would be much larger than the true luminosity, L, i.e., the total
emitted radiation power.

An additional interesting feature of pulsating ULXSs is their
unusually high spin-up rates. KluZniak & Lasota (2015) inferred
a dipole field of ~10” G from the spin-up rate of M82 X-2. As
more pulsating ULXs were found, all with high spin-ups, a
model was formed that incorporated the period, spin-up, and
luminosity to predict the magnetic field strength and intensity of
the beaming (King et al. 2017; King & Lasota 2019, 2020,
hereafter referred to as the KLK model). Besides very small
values of the beaming factor b = L/L;;,,—implying a high degree
of beaming—the model also predicts dipole magnetic fields in
the ran%e of 10°-10"3 G, with most values falling between 10"
and 10" G.

In order to model a neutron star accreting at super-Eddington
accretion rates, it is necessary to run general-relativistic
radiative magnetohydrodynamic (GRRMHD) simulations. As
of writing this Letter, there is only one such global simulation
(Takahashi & Ohsuga 2017) that includes a stellar magnetic
field, and two that do not (Abarca et al. 2018; Takahashi et al.
2018).

The simulation discussed in Takahashi & Ohsuga (2017),
while an important result, has some shortcomings. It is unclear
how the highly magnetized regions are treated, or what effects
the numerical density floor or background atmosphere have on
the emerging radiation. The simulation is run for a rather short
duration, not allowing adequate time for the outflows to reach a
steady state. To overcome these issues, all of which could
potentially contaminate measurements of the luminosity and
flux distribution, we introduce a scheme that captures the
highly magnetized regions of the simulation more realistically.
Such a scheme was introduced by Parfrey & Tchekhovskoy
(2017) and we have implemented it in the GRRMHD code
Koral. We ensure the numerical floors do not affect the
emerging radiation and run the simulation for a much longer
duration.

We wish to investigate the degree to which the radiation
produced by an accreting magnetized neutron star is beamed.
Small values of b and lower neutron-star magnetic fields would
support the KLK model, while values of b near unity would
indicate that some other configuration must be responsible for
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such high observed luminosities. Even if we do find the
radiation to be highly beamed, a direct comparison to the KLK
model would not be very informative considering the
requirement that the magnetospheric and spherization radii be
quite close to each other.

A further caveat to consider is that we have aligned the
magnetic dipole axis with the disk axis, so even if we included
rotation, we would not expect to produce pulsations. However,
the population of non-pulsed ULXs is much larger than the
population of pulsed ULXs, and there is no reason to believe
that some of these also may not be powered by neutron stars.

At the accretion rates we are considering, it has been
predicted that the flow to the magnetosphere forms an optically
thick “accretion curtain” shielding the stellar surface outside
the polar regions (Mushtukov et al. 2017). For a rotating,
misaligned dipole, this would produce smooth pulse profiles as
the radiation is only able to escape through the thin funnel
region along the magnetic poles and this may significantly
lower the pulse fraction through multiple scatterings off the
funnel wall, making a strong pulsed fraction inconsistent with
strong beaming (Mushtukov et al. 2021). A fully 3D simulation
with a misaligned dipole would be necessary to adequately
address this possible inconsistency.

In Section 2 we describe the numerical methods and the
simulation setup. In Section 3 we describe the results of the
simulation. In Section 4 we discuss the effects of beaming and
the expected observed luminosity of the system, and in
Section 5 we summarize the results and our conclusions.

2. Numerical Methods

We use the code Koral (Sadowski et al. 2013, 2015), which
solves the conservation equations of GRRMHD on a static grid
in a fixed metric, g,,. The evolution equations are given by

Vilput) = 0, M
V.T*, = Gy, @
VR, = ~G,, 3)
Y F* =0, @)

The equations correspond to conservation of mass, conserva-
tion of total energy-momentum with coupling of matter and
radiation provided by the radiation four-force, G,, (Mihalas &
Mihalas 1984), and the source-free Maxwell’s equations.
Conservation of mass depends on p, the baryon rest-mass
density, and u", the gas four-velocity. The stress-energy tensor
for a magnetized gas is given by

= (p + P + i + BDutu, + (p + b*/2)6" — bi'b,,
(5)

which makes use of u;,, the gas internal energy, p = (7 — Ditjn,
the gas pressure (where v=5/3 is the adiabatic index), and the
magnetic field four-vector, b" = %ul,F *u,

Written in terms of the Hodge dual of the Faraday tensor,
F**_ the source-free Maxwell equations correspond to the
induction equation (spatial components), and the divergence-free
condition of the magnetic field (# component), both of which are
evolved using the flux constrained transport algorithm (T6th
2000).

Equation (3) only evolves the R'* components of the radiation
stress-energy tensor using G,, which includes opacities defined
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by electron scattering, Comptonization, and bremsstrahlung
absorption. The spatial components, R”, are computed using the
M, closure scheme (Mihalas & Mihalas 1984; Sadowski et al.
2013), which makes the approximation that there exists a frame
with four-velocity u§ in which the radiation can be considered to
be isotropic. In that frame, the radiation has energy density E.
We can then write the radiation tensor in the lab frame as

RW = %Eué’ i + %g‘”’E, 6)

which can be inverted to give the radiation primitive variables
E and uf in terms of R"".

Since we study a nonrotating star it is sufficient to use the
Schwarzschild metric with a coordinate system that is logarithmic
in radius and stretches from r=35r, to r=1000r, where

= GM ¢ is the gravitational radius defined by the neutron star
mass M. For the purposes of this calculatlon we take the radius of
the star to be R = 5r, and we specify” its mass at the canonical
value 1.4 M. While modem studies with the NICER instrument
indicate R ~ 6.4 r, at M ~ 1.3 M, (Riley et al. 2019), the adopted
value of M or R does not affect our results qualitatively. In this
work the geometry of accretion is controlled by the magneto-
sphere.” Unless otherwise specified, we adopt units where
G=c=1. Our simulation is run in 2D axisymmetry with
resolution in r and 6 corresponding to [512, 510] cells.

We initialize the simulation with an equilibrium torus (Penna
et al. 2013) threaded by a single loop of magnetic field that
feeds gas to the star at a rate of ~20Mg4q. The initial maximum
B=(Pgas T+ Prad) / Pmag (the ratio of gas plus radiation to
magnetic pressures) in the torus is equal to 10. We initialize
a stellar dipole field w1th 2 maximum field strength on the
stellar surface of 2 x 10'°G using the potential given in
Wasserman & Shapiro (1983).

Outside the torus, the gas is initialized to a low-density
background. This creates a large contrast in the magnetic and rest-
mass energy densities. The ratio of these two quantities, the
magnetization, o = b*/(2p), provides an indication of where the
numerical scheme should start to break down, with o > 1 regions
being especially prone to error/instabilities. Our simulation is
initialized with a peak magnetization of & = 10*, and in order to
evolve the system we implement the method descrlbed in Parfrey
& Tchekhovskoy (2017). The basic idea of the scheme is to divide
the gas into contributions from the real general-relativistic
magnetohydrodynamic (GRRMHD) flow and from the numerical
floor that keeps o from becoming too large. When gas is
dominated by the numerical floor, the density and internal energy
are adjusted to their background levels and the velocity parallel to
the magnetic field, as measured by the stationary observer, is
reduced. We provide some additional adjustments that improve
the scheme’s robustness in the presence of radiation. We reduce
the scattering and absorption opacities of the gas dominated by the
numerical floor, and we balance energy gain/loss from round-off
errors in the magnetic field by respectively subtracting/adding

3 The observed ULX periods of several seconds make the spin of the neutron
star negligible in our simulations, which typically run for about ~10° GM ¢,
i.e., ~0.7 s of physical time.

4 The results of radiative simulations do not scale with the stellar mass, which
therefore must be specified.

5 In general R/r, varies with the stellar mass, and it is only for weakly
magnetized stars (with a dipole moment about two orders of magnitude below
what we assume here) that the character of flow depends on whether R is larger
or smaller than the radius of the marginally stable orbit (Kluzniak &
Wagoner 1985).
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radiation energy during the conserved-to-primitive variable
inversion.

We also introduce a new boundary condition that attempts to
mimic the hard surface of the neutron-star crust. We treat the
gas as in Parfrey & Tchekhovskoy (2017), allowing it to fall
through the inner boundary unimpeded. Then, on a cell-by-cell
basis, we measure the flux of kinetic, thermal, and radiative
energy flowing through the boundary and return a fraction
(albedo) of that energy as outflowing radiation. In the
calculations reported in this Letter, that fraction corresponds
to 75%, but a full study of this boundary condition for different
values of the albedo is underway. An important consideration is
the actual flux of radiation that crosses the inner boundary,
which is controlled by the Riemann solver. The ghost cells are
set to reflect 75% of the inflowing energy in the ghost cells.
The HLL Riemann solver should pick a value that is roughly
halfway between these two® fluxes and so in actuality we
expect about 12.5% of the radiation flux to escape from the
domain through the inner boundary.

We run the simulation for 80,000¢, where t, = GM 3.
Normally, in 2D axisymmetry, the absence of a dynamo driven
by turbulence from the magnetorotational instability (MRI)
leads to decay of the magnetic field. This is remedied with the
use of a mean-field dynamo that restores the magnetic field in
the accretion disk as a model for how it would be regenerated
in 3D (Sadowski et al. 2015).

3. Simulation Results

The field lines of the stellar dipole are deformed to wrap
around the initial torus, and so far from the star they are out of
equilibrium. As the simulation starts, the magnetic field quickly
relaxes to a stable configuration enveloping the torus while the
closed loops near the star are virtually unchanged.

The torus begins to evolve as the MRI builds up and the gas
begins to accrete. When the gas reaches the stellar magnetic
field, it forces it inward, raising the magnetic pressure until it
balances the ram pressure, at which point the gas begins to slide
along magnetic field lines, forming accretion columns. As the
gas hits the inner boundary, it is shocked and a large amount of
radiation begins to leave the base of the column perpendicu-
larly through the column’s sides. As the simulation progresses,
the accretion disk converges at progressively larger radii to its
steady-state solution, launching outflows that collimate the
radiation released in the columns and inner parts of the disk by
confining it to a funnel-like region about the polar axis.

A snapshot from the simulation at time ¢=32,000¢, is
shown in the upper panel of Figure 1. The lower panel depicts a
time average from 7 = 40,000 ¢, to t = 80,000 #,. The left half of
the panel shows E, the radiation energy density in the fluid
frame, and the right half of the panel shows the gas rest-mass
density.

The magnetic field of the torus is oriented to be opposite in
direction to the dipole field when they meet, leading to
reconnection that allows gas to flow smoothly into the
accretion columns (Parfrey & Tchekhovskoy 2017). The
snapshot shows the remnant of a loop from the torus that had
just reconnected with the stellar dipole in the disk midplane,
indicated by the bold contour in the upper panel.

S The left-biased flux is determined by the ghost cells and the right-biased flux

by the domain.
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Figure 1. Snapshot (upper) and time-averaged (lower) plots of the radiation
energy density (left), and the gas rest-mass density (right). We plot equispaced
contours of Ay, the ¢ component of the vector potential, which correspond to
poloidal field lines due to the axisymmetric nature of the problem. A bold
contour shows the remnant of a torus loop that had just reconnected with the
neutron star’s dipole.

The flow is quite turbulent. The snapshot captures a moment
of lower luminosity before a high-density parcel of gas below
the disk midplane enters the column and collides with the
stellar surface, raising the luminosity significantly. The long-
term effect of successive gas parcels hitting the surface and
becoming shocked contributes to the steep radial gradient of
radiation energy and gas density at the base of the column. This
effect is also apparent from the difference in radiation energies
in the polar region between the two panels. It is also evident
that the polar region is largely devoid of gas. The gas is
confined by the magnetic field to midlatitudes, strongly
contrasting to what was observed in Abarca et al. (2018),
where the absence of a stellar magnetic field allowed
outflowing gas to fill the whole domain.

We can study the outflowing gas in more detail by
considering the azimuthally integrated radial fluxes of gas
and radiation, which are shown in Figure 2. The left half of the
panel is the quantity 277 sin(#) F" in units of [Lgqq e 11, where
F' = R", is the radial component of the radiation flux (or
momentum depending on the factor of ¢). One can then
integrate by eye over rdf to estimate the luminosity. In a
similar way, the gas momentum is integrated into the poloidal
plane giving 27r sin(6) pu” in units of [Lggq e e 2.

Three contours are included. The solid green line shows the
photosphere defined by 7, = 1, where 7, is the scattering optical
depth found by integrating from the outer boundary of the
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Figure 2. Radial radiative flux, F" = R/ (left), and gas momentum density, pu" (right), integrated into the poloidal plane. Overplotted in solid green is the photosphere
at electron scattering depth unity, as measured radially, 7, = 1. The dashed pink and black line shows the photosphere as measured along the 6 direction from the axis.

The dashed teal and black line shows the zero-Bernoulli surface, Be = 0.

simulation to radius r. We can then assume that all of the
outflowing radiation above this surface will reach the observer
giving us a lower limit on the luminosity if we integrate the flux
over the 6 coordinate. By definition we can see very little gas
above this surface, and all of the radiation that is between this
line and the axis is expected to reach infinity. The polar region
is completely dominated by a nearly radial flow of radiation
escaping the inner region of the simulation. Surprisingly, a
significant fraction of outgoing radiation is excluded by the
7,=1 surface. There is very little momentum density in
the corresponding region so one would expect the gas to be
optically thin, and for this to be reflected in the 7, = 1 contour.
However, the outflows do not flow exactly radially, nor in
perfectly straight lines, so the gas at larger radii is obscuring the
inner region. The flux at low radii, however, does not know
about this gas and freely streams over a larger range of angles
than indicated by the 7,=1 surface. At some point (in our
simulation between radius 300 and 400 r,) the radiation scatters
off the outflowing gas, becoming more confined. This is
precisely the radiation-collimation effect that should lead to
large apparent luminosities.

Another consideration is the small density gradient in the
radial direction. This leads to the location of the photosphere
being quite sensitive to small variations in the density and the
precise value of the scattering cross section. The draconian
approach of including 100% of the flux on one side of the
contour and excluding 100% of the flux below the contour may
not be appropriate for estimating the total luminosity, as the
photons located immediately above and below the contour have
almost the same probability of reaching the observer.

We can also measure the optical depth by integrating along 6
from the axis. This surface, 7y = 1, is shown in Figure 2 by the
densely dashed pink and black line. Because 7y is more useful
for measuring the amount of radiation that leaves the accretion
columns (since radiation escapes the column along the 6
direction), it might provide a more accurate representation of
the radiation that can reach the observer. The gradient of
density along 6 is much stronger than in the radial direction so
there is much less uncertainty in the location of the photosphere
in this direction. We can see that 74 is a good indicator for

separating the very strong radiation flow near the axis from the
less intense radiation flow in the gas outflows. Also, 74 is not
affected by the geometry of the outflow at large radii; however,
the question remains what happens to the radiation at large
radii, or the radiation that scatters off of the side of the outflow
near the accretion column?

The last curve, shown in loosely dashed teal and black
represents the surface where the relativistic Bernoulli para-
meter,

_Ttt+Rtt+pul

Be = TR @)

is equal to zero. This surface approximately splits the domain
into energetically bound and unbound regions. Outflowing gas
along this contour would be able to reach infinity with zero
specific energy if it absorbed all of the radiative energy at its
location. In reality, at some point the outflow should become
diffuse enough that the radiation escapes. We can therefore use
the zero-Bernoulli surface to define a region above which we
can integrate the radiation flux to get an upper limit on the
luminosity. If the gas rapidly becomes optically thin, the
luminosity will be close to the integral of flux above this
surface. It is more likely that the radiation deposits some of its
momentum into the outflowing gas, lowering the luminosity.
One could argue that it is also possible for the gas to cool
contributing even more radiation to the total and exceeding this
upper limit. However, we can verify that, at least in the
simulation domain at radii larger than ~707r,, the outflows
almost exclusively absorb radiation.’

If we perform the integrals of radiative flux over spherical
shells bounded by these three surfaces, we can plot the
luminosity for each measure as a function of radius as shown in
Figure 3. In addition to the three luminosities described above,
for reference we also plot the total luminosity as integrated over
the entire domain. Formally we can define the luminosities as

7 Radiation transfers energy from the hot inner region to the cooler

adiabatically expanding gas in the outer regions.
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Figure 3. Four measures of the luminosity are plotted as a function of radius. In
solid blue is L,, loosely dotted orange shows Ly, densely dotted purple is Lg.,
and dashed pink is L.

follows:
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In steady state, the luminosity of a central radiation source
would be constant (apart from redshift factors) with radius if
radiative energy were conserved. However, the presence of gas,
which can absorb and emit radiation, can change the shape of
the luminosity curve even in steady state. Additionally, because
optical depth is defined along coordinates, and not along the
path of photons, it is possible to arbitrarily add or subtract to
the luminosity curve if the average path of the photons is more
complex, such as near the accretion columns.

We have run the simulation for a sufficiently long duration
and taken a sufficiently long time average that the accretion
disk should have reached a steady state out to radius 60-70 r,
and most of the turbulence should average away. The disk
converges outward as the simulation runtime approaches the
viscous time at a particular radius. The outflows, which have
much larger velocity, converge much faster. A weak conv-
ergence condition for the outflow can be given by r/v" < t,,,
where v" = u"/u’ is the coordinate velocity, and 7,y is the time
period over which the simulation data were averaged. Our data
are averaged over a long enough period of time that nearly the
entirety of the gas outflow is able to satisfy the convergence
condition. However, one must also take into account the origin
of the outflow. A large portion of the outflowing gas originates
from regions of the disk that have not yet converged, and as we
explain later, this introduces uncertainty into some measures of
the luminosity, especially at larger radii.
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Despite all of this, L,, shown as the solid blue line, is
somewhat flat out to about radius ~ 500 r, and so we believe
that L, ~ 2.5 Lgq4q is a good measure of the total radiative output
of the simulation or at least a suitable lower limit. The steady
rise up to radius 807, is probably due to radiation being
emitted in and emerging from the outflows. Beyond, it is hard
to determine whether the fluctuations are geometrical, or due to
the unconverged nature of the simulation at large radii.

Lge, Lo, and Ly, all show negative values near the star. This
is related to the well-understood phenomenon of photon
trapping in super-Eddington accretion disks (Ohsuga et al.
2002; Sadowski & Narayan 2016). Most of the radiation is
advected inward by the optically thick gas before it can diffuse
out of the disk. In our neutron-star case some of this energy is
released at the surface. It would appear the photon-trapping
effect is so strong that even with an albedo of 75%, inflowing
radiation in the accretion columns dominates energy transport
near the stellar surface. L, is also largely dominated by the
advection of photons in the accretion columns and continues to
decrease all the way to the surface.

Both L, and Ly rise steeply over the first r, or so above the star
due to the radiation shock. L, continues to rise as the accretion
columns and accretion disk add to the luminosity. Ly includes
radiation released from the outflow below radius ~70r, At
larger radii G, switches sign, and the radiation contributing to Ly
passes through enough gas to deposit almost half of its
momentum into the outflow lowering the luminosity to a local
minimum of ~3.75Lgg4y. The location of the 7y =1 surface is
unaffected by the outer boundary so the steady rise in Ly above
r~200r, is likely due to the gas becoming steadily thinner,
allowing more of the flux to contribute to the luminosity.

A similar effect is seen in Lg. and L. They rise sharply
with increasing r up to r~60r, as there is a significant
amount of radiation advected with the outflow, and then drop
as momentum starts to be transferred to the gas. Lg. is
integrated over regions of the outflow that originate from parts
of the disk that have not yet converged, especially beyond
radius r ~ 100 r,, which increases the uncertainty in its value,
especially at larger radii. Ly, largely follows L, although this
appears to be largely a coincidence and is due to the equal
amounts of radiation flowing inward and outward over the
region where Be < 0.

4. Beamed Emission

The most important quantity, which is the signature of all
ULXs, is a large apparent isotropic luminosity, that is,
L= dnd’F , measured from an observed flux, F, emitted by an
object at a distance, d, away from the observer (neglecting
cosmological effects). While it is impossible to predict L;, reliably
from the simulation data without sophisticated radiation post-
processing, we can estimate it at a few locations in the simulation
and see how it changes with radius. Plotted in the left panel of
Figure 4 is L;, as a function of viewing angle for different radii.
The figure is presented in polar coordinates to emphasize the
beaming pattern. One can immediately see that the vast majority of
the flux is confined within 20° of the axis. The peak Li, lies along
the axis, and while it decays with radius (from the continuous
green line through the dashed lines to the dotted one), it appears to
be converging to a large value well above 100 Lgqq that is about
2 x 10*ergs™" for a canonical 1.4 M, neutron star.

The apparent luminosity is clearly bright enough for the
neutron star to qualify as a ULX. To compare the measured
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Figure 4. Inferred isotropic flux (left) and beaming pattern (right) as a function
of viewing angle, measured from the pole. For the left panel, the radial
coordinate corresponds to the isotropic luminosity, Lis, = 47r"F". For the right
panel, the radial coordinate measures beaming, 1/b, i.e., the inferred isotropic
luminosity as a function of angle divided by the total luminosity. The left side
of the right panel is a lower limit for 1/b obtained with the total luminosity,
Lg.. The right side of the right panel assumes the total luminosity is L,, which
provides an upper limit on 1/b. All the quantities are measured at specific radii
in the simulation, as indicated by the legend.

degree of beaming with the KLK model, we need to choose a
quantity to function as the total luminosity. We consider L, and
Lg. as lower and upper limits, respectively (although we are
confident that the true luminosity is much closer to L,). These
also correspond to lower and upper limits for the beaming
factor b = L/Li,.

Near the axis, Liso/Lpe ~ 25, and is more or less constant
with radius. This already exceeds 1/b as computed from the
KLK model (King et al. 2017; King & Lasota 2019, 2020) for
all the sources they included. If we instead consider Lis,/L,,
then 1/b shoots up to above 80. It falls at larger radii, to
around 60.

Note that the beaming factor is a function of the angle. In
general, 1/b is proportional to flux, which is a function of 0,
and lower viewing angles will tend to display more extreme
beaming (corresponding to smaller values of b).

An important consideration is the effect that axisymmetry
has on our simulation. Sadowski & Narayan (2016) compared a
2D axisymmetric accretion disk simulation onto a black hole to
an identical simulation in 3D. The authors found that both of
the simulations were remarkably similar, although the authors
did notice that the degree of beaming was overestimated in the
2D simulation by a factor of about 2. We expect a similar
degree of exaggerated beaming because the mechanism that
collimates radiation is the same in both works. This could
lower our estimated apparent isotropic flux to be around

8 As rincreases 7, feels the effect of a finite outer boundary, so it is possible
that the computed value of L, may be slightly overestimated, leading to a
slightly underestimated 1/b at large radii.
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10%° erg s~1, which is still well in the realm of observed ULX
luminosities.

Regardless of the measure used to compute the total
luminosity, we have shown that a low-magnetic-field neutron
star can produce emission that is sufficiently beamed to
produce a ULX. The closest theoretical model to our
simulation, the KLK model, also predicts large amounts of
beaming, although not as extreme as we observe. The two
models need not completely agree since they differ in several
ways. The disk in our simulation has a very large spherization
radius when compared to the magnetospheric radius. The KLK
model requires that these two radii be much closer. This would
substantially affect the outflows, as they are only launched
below ry,, and above ry. Including the spherization radius in
the domain is challenging, first, because it takes a long time for
the simulation to converge to such large radii, and second,
because beyond rgpp, the disk should be similar to a thin disk,
and thin disks are notoriously difficult to simulate.

One issue, although one that we already have plans to
remedy, is the limitations of Koral when simulating the
radiation field. Koral is a gray code that uses the M, closure
scheme to transport radiation. M; works well for large extended
sources, but when radiation originating from two or more
distinct locations collide, the beams interact. For us, this is
most problematic in the region directly outside of the accretion
columns. The radiation flows toward the axis and is then
directed upward due to the polar boundary condition, which is
reflective. In reality, we expect the beams from the accretion
columns to scatter off of the opposite wall formed by the gas
outflows. After enough scatterings, the radiation should be
collimated and largely moving along the axis. From Figure 1
we can see that the radiation already appears collimated as soon
as it leaves the accretion column.

To get a more accurate representation of the radiation field,
we need to go beyond the M; scheme. HEROIC (Narayan et al.
2016) is a postprocessing radiative transfer code that could be
used to recompute the radiation field and spectrum for an
observer at infinity as a function of viewing angle. While such
calculations are out of the scope of this Letter, we plan to apply
HEROIC postprocessing analysis to the rest of our simulations
in a future publication.

5. Summary and Conclusions

We performed a 2D axisymmetric GRRMHD simulation of
accretion onto a neutron star with a 2 x 10'°G dipolar
magnetic field. The combination of the hard surface and
confinement of the gas into accretion columns by the stellar
magnetic field near the stellar surface allows the flow to release
radiative energy at a rate of several times the Eddington limit.
The fraction of this energy that is able to reach the observer, as
opposed to being absorbed by the outflows, is difficult to
calculate, but a lower limit of the observable luminosity should
correspond to about 2.5 Lggy. The radiation easily escapes
into the polar region, which is largely devoid of gas due to a
combination of the magnetic field and rotation of the
outflowing gas that collimates the radiation flow. While a
more precise calculation of the radiation field is required due to
the limitations of the simulation, our results show that this
escaping radiation will be highly beamed. The apparent
isotropic luminosity of the source observed pole-on should be
on the order of 100 Lgyq. This is encouraging if we wish to
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interpret the accreting system as a model of a neutron-star-
powered ULX.

When compared to the KLK model (King et al. 2017; King &
Lasota 2019, 2020), we find that the intensity of the beaming is
larger, although we have reason to believe that postprocessing
would show a less intensely beamed distribution of radiation at
infinity. Furthermore, our simulation does not model the same
system as considered by KLK. The distance between the Alfvén
radius and spherization radius is large. We hope to produce
simulations in future studies that can reproduce additional
observable features of ULXs and that can provide more
information about the nature of the magnetic field in pulsating
and nonpulsating ULXSs.
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