
Disk vertical structure and 
radiative transfer

1. Summary of the previous lecture
We showed that if the accretion disk is (I) stationary (ii) Keplerian (iii) optically thick (iv) radiates 
locally as a black body we can uniquely determine:

The radiation flux emitted by the disk as the function of radius

The effective temperature as a function of radius

The radiation spectrum of the disk

HOWEVER:

This approach does not give us any information about
 Disk geometrical and optical thickness
 Disk temperature close to the equatorial plane
 Disk local density
 Stability of the solution
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2. alpha – viscosity 
Previously we used the angular momentum conservation and energy conservation to get rid of the 
information about the viscosity. But if we want to get all information about the disk, we need some 
viscosity prescription.

Shakura (1972) and Shakura&Sunyaev (1973) introduced the following new idea for the viscous 
stress

The motivation comes from different arguments:

  Dimensionally, the viscous torque has the dimension of the pressure

  The phenomenon is likely magnetic in nature, as argued in SS73, and the strength of the magnetic 
field in the disk should roughly scale also with the pressure

●  If the viscosity would be turbulent in nature, then this scaling is also justified but to see that we 
need an equation of hydrostatic equilibrium (coming soon)

trϕ = α Ptot P tot = Pgas+Prad

Θ=∫−∞

∞
2π r2 t rϕ dz

Ṁ (lK−linn) = Θ−Θinn

We now know that disk viscosity is related to magneto-rotational 
instability, but this will be discussed during the lecture 11 



2. alpha – viscosity

Figure from von Larcher et al. (2018)

The issue of the hydrodynamics and 
magnetohydrodynamics of the flow 
between the two rotating cyliders is 
studies theoretically as well as in the 
laboratories. 

The replacement of all these complex 
phenomena with just a simple 
prescription is a gross 
oversimplification with not well 
understood consequences.

But on the other hand it allows to 
calculate simple disk models 
efficiently, and then by comparison to 
the data we can try to judge if the 
description is reasonable or not that 
much.  

The representation of all complex instabilities with just a 
single expression 

relies on assumption that those instabilities finally saturate at 
some level of the turbulence, and they transport angular 
momentum at the requested steady rate.

t rϕ = α P



3. hydrostatic equation

We did not look yet at the ‘z’ component of the Euler equation. In general, in cylidrical coordinates, 
it reads (where theta stands for phi in usual notation)

But we assume now stationarity and axial symmetry, and all torque components apart from t
rφ

 

vanish.  In addition, we assume that v
z
 is actually negligible since in general it is much smaller that 

radial velocity. Thus the equation reduces to the right hand side.
Here g

z
 represents the ‘z’ component of gravity, where the total gravitational acceleration directed 

towards the black hole is                                with the z-component:

Now assuming z << r we can neglect z in denominator
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3. hydrostatic equation

1
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dP
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= −GMz

r3
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If we assume politropic approximation                                                  we can solve this equation 
analytically and we get

Constant value can be conveniently expressed noticing that the density at the disk surface z = H is 
equal zero, and when z = 0, the density is given by the density in the equatorial plane, ρe. Since we 
do not know the constant K, it is convenient to rearrange the expression using again both pressure 
and density, and then from the boundary conditions we get

This is interesting, remembering the definition of the sound speed and ignoring the numerical factors 
we see that in the equatorial plane

i.e. sound speed is much smaller                         than the Keplerian velocity. I remind you that our 
approach actually required H << r. This is true independently from the politropic approximation.
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3. hydrostatic equation

In disk modeling we do not use the universal politropic approximation for the reason which will be 
clear soon (pressure and opacity issue). And to derive simple vertically integrated/averaged equations 
we can use even simple approach:
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= −GMz

r3
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P
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Saves time, and coefficients are not very accurate in 
such approach anyway...

4. radial force equation
We do not need it, but let us have a look now why we do not need it.

From the assumption of stationarity, axial symmetry, and the dominance of the component  t
rφ 

 most 

components vanish. Leading terms: gravity and centrifugal force. We also usually assume that the 
radial velocity does not depend on the parameter z, which removes the last term on the LHS.



4. radial force equation

vr
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Can we safely assume that l = l
K
 and forget about this 

equation?

The second term on the LHS is of order of P/ρ/r, and from the equation of the hydrostatic 
equilibrium we have

The radial pressure gradient is small if the disk in geometrically thin, H<<r. 

This is true if the Eddington ratio of the disk is small, we will see that when we use other equations 
later on. The first term is small if the radial velocity is smaller than the sound speed. This is not true 
very close to ISCO, independently from the Eddington ratio.  
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Condition for the Keplerian disk:     H << r



5. energy conservation

0 =−
dF rad

dz
−t rϕ r

dΩ
dr

We talked about this equation during the previous lecture. Under assumptions we introduce to 
describe the Keplerian disk it reads

Since now we have an explicit assumption                                                                        we can put 
there the derivative of the Keplerian angular momentum and we get the equation 

This does not close our set of equations even if we supplement it with the expression for the relation 
between the pressure and the temperature and density

The first term is the gas pressure, and the second term is the radiation pressure in the optically thick 
medium. Now we have two equations for the vertical structure (for P(z) and F

rad
(z), continuity 

equation will not help since it contains new variable v
r
.) We need to describe disk cooling, since this 

will determine the temperature profile of the disk in the vertical direction. 
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6. Radiative transfer  - a short summary

Transfer of radiation from the source through the medum to the observer allows to connect the information about 
the source and the medium. 
(a) general approach
The basic quantity in the radiative transfer theory is the radiation intensity:  Iν ( r⃗ , n⃗ , t)

This is defined as the energy flux DE per unit surface, per 
steradian, per unit time, and per unit frequency in the direction n 
dE =  I

ν
A cosθ dν dθ dt

dI
ν 
does not depend on the distance from the source if there are no 

losses (absorption or scattering) or gains (emission from the 
medium between the source and the surface). 

The radiation flux in turn is defined as the energy flu dE per unit 
area, unit time and unit frequency, 

and this quantity does depend on the distance from the source 



6. Radiative transfer  - a short summary

Thus, studying intensity is like a stydying a 
single light ray. If we are in an isotropic 
medium, then
                                but

The basic radiation transfer equation has the following form

This part, proportional to I
ν
 and negative, 

describes extinction (absorption and 
scattering), but it also contains stimulated 
emission so sometimes the term can be 
positive (laser action)

This part described the emission of a new photon 
with the frequency ν, and also redirection of 
photons going previously in a different direction to 
the studied direction by scattering. 

This classical form of the radiation transfer does not include the 
change of the photon energy during the inelastic scattering 
(Comptonization).



6. Radiative transfer  - a short summary

(b) special case – black body emission 
 This takes place if  

(c) special case – thermal emission 
 This case is more general, it describes the emission of the matter which is in thermal equilibrium with black 
body radiation. If we neglect the scattering then we have

Kirchhoff law describes the relation 
between the emissivity of the matter 
and absorption.

(d) general case  
 In general solving the radiative transfer equation is not easy and requires considerable computer power. Source 
of problems:
 The equation has to be solved for many directions
 The description of the absorption and emission requires careful independent computation of the ionization 
structure of the matter, and then computations of the atomic transitions (hundreds of thousands of lines have to 
be included, on the top of free-free and bound-free transitions)
 Comptonization (inelastic scattering)
 



6. Radiative transfer  - a short summary

(e) special case – optically thick medium 
 This is also a situation when considerable simplifications can be done. This limit is important for computation 
the stellar structure as well as the vertical structure of accretion disks.
In the case of a disk, we then concentrate on the vertical direction, since the derivatives will be the largest in 
this direction 

ds = dz/μ

Isotropic term Anisotropic term

Now we construct the radiation flux:
The isotropic term will not contribute since the 
same amount of radiation passes up and down.



6. Radiative transfer  - a short summary

ds = dz/μ

Now we assume that the disk interior radiates as a 
black body:

∂ Iν

∂ z
=∂ Bν

∂ z
=∂ Bν

∂T
∂T
∂ z

and integrating  μ2 over μ from -1 to 1 we get 2/3. The remaining factor are not angle dependent, 
so we finally obtain an equation

This looks simpler but still the whole 
equation has to be solved as a function of 
the vertical coordinate ‘z’ and the 
frequency, and we need a complex 
information on opacity coefficient α

ν
.



6. Radiative transfer  - a short summary

Since we expect that the disk surface will emit as a black body we hope that the detailed 
dependence of the opacity on the frequency is not that important. We thus integrate this equation 
over frequency to get the total, frequency-integrated flux as a function of the optical depth

This was possible because we introduced a new quantity – frequency-integrated opacity which is 
known as the Rosseland mean

Note that the prescription for the Rosseland 
mean was forced by the structure of 
radiative transfer equation in the optically 
thick medium!

The opacity here contains both absorption and electron scattering 
(elastic scattering – not Comptonization!) .
There are analitical formulae for               as functions of density and 
temperature but available tables are usually much more accurate.   



6. Radiative transfer  - a short summary

There is also another frequency-averaged opacity, so called Planck mean, or Planck opacity

It has a different structure and actually applies to 
optically thin media, in calculating the radiation pressure.
For standard disks, we will use Rosseland mean.

Electron scattering opacity is directly related to Thomson crosss-section.  In cgs opacity has units of 
cm2/g     (roughly κ

es
 = σ

Th
/m

p
). More accurately

Κ
es
 = 0.20(1 +X)   [cm2/g]

where X is the hydrogen abundance (X = 1 for pure hydrogen plasma). In the case of free-free 
emission of solar-composition plasma

Κ
ff
 (ρ,T) =  0.64 x 1023  ρ T-7/2 [cm2/g]

This neglects the ionization and recombination (bound-free transitions) which are important, as well 
as dust/grain opacity etc. important at lower temperatures.

κ Pl=
∫
0

∞
κ ν Bν dν

∫
0

∞
Bν dν



6. Radiative transfer  - a short summary

We now drop the partial derivative since we assume that the disk is stationary, and we rewrite the 
equation into the form stressing its differential equation nature

dT ( z)
dz

=−
3α R

16σ T 3
F (z) radiative transfer

This is the last equation we need in order to determine the disk vertical structure.



7. Final set of equations for the Keplerian stationary disk structure 

We this have three differential equations for the disk vertical structure:

What happened to the integrated equations we had before? They serve as the boundary conditions.
So we need to determine the density ρ, the temperature T, the pressure P, the radiation flux F

rad 
as 

functions of the coordinate z at each radius.  We have 3 equations, but we have also the expression 
for pressure                                            and we need to know α

R
(ρ,T). 

1
ρ

dP
dz

= −GMz

r3
hydrostatic equilibrium

dFrad ( z)
dz

=3
2
α PΩK energy generation

dT ( z)
dz

=−
3α R

16σ T 3
Frad ( z) radiative transfer

P= k
μ mH

ρ T + 1
3

aT 4

The integration requires boundary conditions. In the equatorial plane F
rad 

= 0 (from symmetry!), but 

we do not know T
e
, and ρ

e
. On the other hand, at the disk surface (z = H, a priori unknown) we have: 

ρ(H)=0, F
rad

(H) is the total flux dissipated in the disk,

and we know the effective temperature, T
eff

.
Frad (r) =3G M Ṁ

8π r3
(1−

linn

lK (r)
)



7. Final set of equations for the Keplerian stationary disk vertical 
structure 

Since the boundary conditions are not set at the same plase (some at the disk surface, some at the 
equatorial plane), the problem is solved eithe by relaxation method (recommended) or by assuming 
unknown H, calculating the effective temperature and flux at the surface from 

and integrating equations down to the equatorial plane.

Usually the expected condition  F
rad 

= 0 is not satisfied at the equatorial plane z = 0, so then another H 

is assumed, process repeated until convergence.
Two additional issues:
● Actually, the condition for the disk temperature at the disk surface is set by

 T(H)4 = 0.5 T
eff

4         (T
eff

 is the temperature at the optical depth τ = 2/3; stellar atmosphere theory)

● In accretion disk, apart from radiative transfer, also convective transfer is present, and it can be 
included in the vertical structure computations (e.g. Różańska et al. 1999). We will not discuss this 
issue.

Wspomnieć o konwekcji ?
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8. Vertically averaged disk structure
Sometimes we are not that much interested in the details of the vertical structure but we want to know 
the disk thickness, the surface density, the temperature at the equatorial plane, and the timescales of 
the disk variability. Then we go to vertically averaged values

1
ρ

dP
dz

= −GMz

r3
hydrostatic equilibrium
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dz

=3
2
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=−
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1
ρ

P
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= GMH

r3

F rad

H
=3

2
α PΩK

T
H

=
3α R

16σ T 3
F rad

The exact coefficients depend on the averaging or integrating method, but the approach is 
approximate anyway. The last equation can be roughly rewritten in the form

                                    where τ is the total optical depth of the disk (equal α
R
 H)

Thus of course the disk interior is roughly an order of magnitude hotter than the effective 
temperature.

Frad=
σ T 4

τ



8. Vertically averaged disk structure
These equations can be solved analytically and have a power law form  if
 the pressure has a simple form, that is the first or the second term dominate

 The opacity has a simple form, that is the first or the second term dominate

1
ρ

P
H

= GMH

r3

F rad

H
=3

2
α PΩK

T
H

=
3α R

16σ T 3
F rad

 In each of these regions an analytical solution is provided. The boundary condition has the 
Newtonian form. 

P= k
μ mH

ρ T + 1
3

aT 4

Frad (r) =3G M Ṁ

8π r3
(1−

linn

lK (r)
)

α R=ρ (κ es+κ absor)

These requirements forced Shakura & Sunyaev  to adopt three 
regions of the accretion disk:

 Inner region (P = P
rad

, κ = κ
es
)

 Middle region (P = P
gas

, κ = κ
es
)

 Outer region (P = P
gas

, κ = κ
ff
)



8. Vertically averaged disk structure

SS73 dimensionless units

 Inner region (P = P
rad

, κ = κ
es
)

Disk thickness

This region is important for AGN – disks are radiation-pressure dominated. It is important to note 
that (apart from the ISCO) the disk thickness is constant, and it is rising with the accretion rate. 
Since we require the disk to be geometrically thin it is clear that for Eddington ration close to 1 or 
above the model will not apply. The disk thickness does not depend on viscosity.

Surface density (ρH)
It depends on viscosity, rises with radius 
but drops with accretion rate. This will 
cause the stability issue (lecture 9).



8. Vertically averaged disk structure

SS73 dimensionless units

 Middle region (P = P
gas

, κ = κ
es
)

Disk thickness

In this region the disk thickness rises with the radius practically linearly.

Surface density (ρH)

It depends on viscosity, but now decreases 
with radius but rises with accretion rate. 



8. Vertically averaged disk structure

SS73 dimensionless units

 Outer region (P = P
gas

, κ = κ
ff
)

Disk thickness

In this region the disk thickness rises with the radius practically linearly.

Surface density (ρH)
It depends on viscosity, but again 
decreases with radius but rises with 
accretion rate. 



8. Vertically averaged disk structure

Frequently used terms inner-middle-outer regions are a bit misleading.
If you use inner region prescription close to ISCO then

but actually close to ISCO the temperature is low, and the prescription ‘outer’ should be used, so

This approach does not solve all the problems at ISCO (radial velocity is infinite) but otherwise it 
returns reasonable values almost down to ISCO.
 

u0→∞

ISCO Outer
region

Middle
region

Inner
region

Middle
region

Outer
region

r

Taking the results for the inner region from SS73 we can also show that

Prad

Pgas

=ṁ2 m1/4 Radiation pressure becomes larger in comparison 
to the gas pressure when Eddington ratio rises, 
and when the black hole mass is large (for AGN).



9. Acccretion disk behaviour close to ISCO
The understanding of the flow close to ISCO was not obious, and it was a topic of my PhD Thesis. 
The final formulation of the equations is in the paper Muchotrzeb & Paczyński (1982), where we 
used pseudo-Newtonian approximation.
In general case it is important to keep more terms in the vertically integrated equation of the radial 
motion

to allow for the departure from the Keplerian motion. Consequently, also the energy balance has to be 
modified

Then the radial motion, combined with the continuity equation  can be rewritten in a form

very similar to the form we studied for spherical accretion. Here a
s
 is a sound speed.

advection 
term



9. Acccretion disk behaviour close to ISCO

solution for the disk structure close to ISCO, 
here r

g
 is actually R

Schw
.

In geometrically thin disk the angular 
momentum above ISCO is roughly 
Keplerian, just below ISCO the flow 
becomes supersonic and angular 
momentum is constant.



9. Acccretion disk behaviour close to ISCO

Those additional terms become more important in a standard disk as the Eddington ratio of the flow 
rises, they are also important for optically thin geometrically thick flows. This will be important in 
lecture 8 and 9. During lecture 9 we will also see why we need this vertical structure.



HOMEWORK
1. How exactly we derived the equation: 

Starting from the equation:
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