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Abstract

The subject of this thesis is the numerical simulation of ultraluminous X-ray sources
(ULXs), that are powered by neutron stars with moderately strong dipolar magnetic
fields.

A numerical test has been conducted, evaluating the performance of codes in as-
trophysics, the General Relativistic Radiative Magnetohydrodynamics (GRRMHD)
code Koral and the Newtonian code Pluto through simulations of the Orszag-Tang
problem–a simple yet well-established test for magnetohydrodynamics (MHD) codes.
A qualitative and quantitative comparison of codes has been performed between the
results obtained from simulations in different MHD models, resolutions, and dimen-
sions. Numerical diffusion has been estimated and the resolution at which the results
are physical with the least impact of numerical error has been determined using re-
sistive MHD simulations in Pluto. It has been demonstrated that Koral excels in
capturing substructures in numerical simulations with higher accuracy and exhibits
reduced numerical dissipation compared to Pluto. Consequently, it has been con-
cluded that it is feasible to conduct simulations using Koral at lower resolutions
than in Pluto.

Ten numerical simulations of super-Eddington accretion onto the neutron star
with a dipolar magnetic field of moderate strengths (1010−11 G) have been conducted
using the Koral code. The goal was to find the magnetic dipole strength and
accretion rate at which the accreting neutron star exhibits the apparent luminosity
of observed ULXs. The study has been divided into two parts: In the first part,
the simulations have been performed with six different dipole strengths and mass
accretion rates of not less than 200 Eddington luminosities. It has been found that
the weaker dipole simulation results in higher apparent luminosity compared to the
stronger dipole. In weak dipole simulations (1010 G), the apparent luminosity is
about 120 Eddington units. For the dipole one order of magnitude stronger (1011 G)
this value is only 40 Eddington units. In the second part, the impact of the accretion
rate has then been investigated by comparing three accretion rates for two different
dipole strengths, 3 × 1010 and 1010 G. The apparent luminosity increases with the
increase of the accretion rate. However, for both dipole strengths with accretion
rates beyond 300 Eddington luminosities, apparent luminosity is exceeding ∼ 100
Eddington units, which is compatible with ULX observations.
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Streszczenie
(Abstract in Polish)

Przedmiotem tej pracy są symulacje numeryczne ultrajasnych źródeł rentgenows-
kich (ULX), zasilanych przez akrecję na gwiazdy neutronowe z umiarkowanymi
dipolowymi polami magnetycznymi.

Przeprowadzono test numeryczny oceniający wydajność kodów numerycznych w
astrofizyce: kodu Koral, rozwiązującego równania ogólno-relatywistycznej promienis-
tej magnetohydrodynamiki (GRRMHD) oraz kodu newtonowskiego Pluto. Symu-
lowano problem Orszaga-Tanga – prosty, ale powszechnie uznany problem testowy
dla kodów magnetohydrodynamicznych (MHD). Przeprowadzono jakościowe i iloś-
ciowe porównanie obu kodów na podstawie wyników uzyskanych z symulacji w
różnych modelach MHD, rozdzielczościach i wymiarach. Oszacowano dyfuzję nu-
meryczną i określono rozdzielczość, przy której wyniki są fizyczne przy najmniejszym
wpływie błędu numerycznego, wykorzystując symulacje rezystywnej MHD w Pluto.
Wykazano, że Koral z większą dokładnością wychwytuje podstruktury w symulac-
jach numerycznych i wykazuje mniejszą dyssypację numeryczną w porównaniu z
Pluto. W związku z tym stwierdzono, że za pomocą kodu Koral możliwe jest
przeprowadzanie symulacji przy niższych rozdzielczościach niż w przypadku Pluto.

Za pomocą kodu Koral przeprowadzono dziesięć symulacji numerycznych akrecji
super-Eddingtonowskiej na gwiazdę neutronową z dipolowym polem magnetycznym
o umiarkowanej wartości (1010−11 G). Celem było znalezienie siły dipola magnety-
cznego i tempa akrecji, przy których akreująca gwiazda neutronowa wykazuje jas-
ność pozorną równą obserwowanym ULX. Badania wykonano w dwóch krokach. W
pierwszym, przeprowadzono symulacje z sześcioma różnymi siłami dipola i tempami
akrecji nie mniejszymi niż 200 jasności Eddingtona. Stwierdzono, że symulacja ze
słabszym dipolem skutkuje wyższą jasnością pozorną w porównaniu do symulacji z
silniejszym dipolem. Dla wartości pola (1010 G) jasność pozorna wynosi około 120
jednostek Eddingtona, a dla pola o rząd wielkości silniejszego – 40 jednostek Ed-
dingtona. W drugim kroku zbadano wpływ tempa akrecji, symulując trzy wartości
tempa akrecji dla dwóch różnych wartości pól magnetycznych 3× 1010 i 1010 G. Jas-
ność pozorna rośnie wraz ze wzrostem tempa akrecji. Jednak dla obydwu dipoli
z tempem akrecji przekraczającym 300 jasności Eddingtona skutkują jasnością po-
zorną przekraczającą ∼ 100 jednostek Eddingtona, co jest zgodne z obserwacjami
ULX.
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Chapter 1

Introduction

This thesis investigates ULXs driven by super-Eddington accretion onto neutron
stars with moderate-strength dipolar magnetic fields. ULXs are non-nuclear extra-
galactic sources that emit X-rays at luminosities exceeding 1039 erg s−1.

The discovery of coherent pulsations in ULX emission (Bachetti, Harrison, et
al., 2014) suggested that the central object is a neutron star accreting beyond its
Eddington limit.

Both numerical simulations and analysis of observational data are necessary to
explore the physics responsible for the pulsation and high-rate X-ray emission of
ULXs. However, simulation of accreting neutron stars is challenging due to their
hard surface and intrinsic magnetic field.

I perform numerical simulations of super-Eddington accretion onto a neutron
star with moderately strong dipolar magnetic fields in a general relativistic radiative
magnetohydrodynamic (GRRMHD) code. I aim to find the limits of the strength
of dipole and accretion rate in which the ULXs are powered by accreting neutron
stars.

The introduction chapter is structured as follows: Accretion-powered X-ray pul-
sars are described in the first Section 1.1. ULXs are discussed in Section 1.2. The
final section of the introduction focuses on the numerical simulations used to study
accreting compact objects, including neutron stars, with the description of the nu-
merical simulation code Koral that is used in my study.

1.1 Accretion powered X-ray pulsars
Pulsars are magnetized rotating neutron stars that emit beams of electromagnetic
radiation. These beams are characterized by regular pulsing signals, which can be
detected in radio, optical, X-ray, and gamma-ray wavelengths. The first pulsar was
discovered by Hewish, Bell, et al. (1968) with emission in radio wavelengths and is
often recognized as the first observationally confirmed neutron star.

A few months before the discovery of the first radio pulsar, Shklovsky (1967) ac-
curately indicated that Scorpius X-1 is powered by an accreting neutron star. X-ray
pulsars represent a significant subclass of pulsars characterized by their accretion-
powered X-ray emissions. These pulsars are typically found in binary systems, where
the intense gravitational field of the neutron star draws material from its companion
star. The gravitational energy of accreted material dissipates to X-ray emission.
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1.1. ACCRETION POWERED X-RAY PULSARS

The focus of my thesis is on accretion-powered X-ray pulsars, so I introduce
X-ray binaries, focusing on those containing neutron stars.

1.1.1 X-ray binaries

In X-ray binary systems, accretion onto the compact object can occur either from
the stellar winds of the companion or from matter transfers when the companion
overflows its Roche-lobe. According to the companion star, X-ray binaries are cat-
egorized into two main groups, low-mass X-ray binaries (LMXBs) and high-mass
X-ray binaries (HMXBs).

LMXBs contain a low-mass star companion (≤ 1M⊙). These binary systems
typically are old with a companion that can be a brown dwarf, white dwarf, or sub-
giant. The accretion occurs when the companion fills its Roche-lobe. In the LMXBs
the magnetic field of the neutron star is ≲ 109 G. Their spin period depends on the
mass accretion rate and magnetic field of the neutron star e.g. for a neutron star
with magnetic field ∼ 108 G and accretion rate near the Eddington limit (Eddington
accretion rate is discussed in subsection ‘Accretion rate’) the spin period is about
millisecond (Harding, 2013). The X-ray luminosity of neutron star LMXBs in quies-
cence state is about 1032−33 erg s−1(Tomsick, Gelino, et al., 2004; Meyer-Hofmeister,
Cheng, & Liu, 2024).

HMXBs typically involve a massive star (O or B type) with a mass larger than
solar mass. In HMXBs accretion often occurs via stellar winds from the massive
companion and it is rarely observed that the companion overflows its Roche-lobe
(Kretschmar, Fürst, et al., 2019). The magnetic field of the neutron star in HMXBs
is about 1011 - 1013 G, and the spin period is from less than a second to 12 minutes
(King, Lasota, & Middleton, 2023). Particularly, Her-X1 has the magnetic field of
1012 G and a 2M⊙ companion (Truemper, Pietsch, et al., 1978). A large number of
HMXBs are Be-X binary systems containing a neutron star and a B-type companion.
Be-X binaries have a wide, eccentric orbit. This results in periodic accretion of
material when the neutron star crosses through a disk surrounding the B-type star.
These binaries have a steady luminosity about 1032 erg s−1. They emit X-ray ≳
1039 erg s−1 during outburst, classifying them as ULXs (see review by King, Lasota,
& Middleton, 2023, and references therein).

Another interesting observed property of neutron star HMXBs is pulsation. The
magnetic field of the neutron star is strong enough to truncate the accretion in the
inner region of the disk, and the gas is forced to move along the field lines toward
the pole of the neutron star. The gravitational energy of infalling material that is
released in the form of X-ray is not emitted isotropically, and the misalignment of
the rotation and magnetic field axes causes the periodic pulsation for a distant ob-
server (Giacconi, Gursky, et al., 1971). The pulsations observed in ULXs (Bachetti,
Harrison, et al., 2014) have introduced an interesting new area of study in the field
of X-ray pulsars.

In my thesis, I study models of ULXs powered by accreting pulsars in HMXBs.

Accretion mechanism

The accretion disk of compact objects, such as black holes or neutron stars, is a
structure formed by material spiraling towards the compact object. Transfer of the
matter towards the compact object is attributed to the loss of angular momentum.
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1.1. ACCRETION POWERED X-RAY PULSARS

The gas particles within the disk collide and interact, losing the angular momentum
through viscous friction and magnetic diffusion.

Effective viscosity in the disk plays a crucial role in angular momentum trans-
fer, often parameterized using the α viscosity when the dominant component of the
viscous stress tensor is proportional to the pressure: Trϕ = αP (Shakura & Sun-
yaev, 1973). High viscosity facilitates the transfer of angular momentum outward,
enabling the material to move inward. As the material in the disk moves closer to
the compact object, gravitational energy is converted into thermal energy, causing
the disk to heat up. This process results in the emission of X-rays, which are par-
ticularly intense near the inner regions of the disk where temperatures can reach
millions of degrees.

Magnetorotational instability (MRI) is the fundamental mechanism allowing an-
gular momentum transfer within accretion disks, enabling the movement of material
towards the compact object. MRI manifests in the presence of a weak magnetic
field within a differentially rotating disk (Balbus & Hawley, 1991; Balbus & Haw-
ley, 1998). The instability arises when magnetic field lines within the disk connect
parcels of gas at different radii. Magnetic tension acts as a mediator between the
deferentially rotating gas parcels facilitating the transfer of angular momentum be-
tween them. This process results in the outward transport of angular momentum
and the inward flow of matter.

MRI plays a crucial role in generating turbulence within the disk, significantly
increasing its viscosity and thereby enhancing the rate of accretion. The turbulence
driven by MRI sustains the conditions necessary for continuous accretion and the
consequent high-energy emissions observed from compact objects. In the context of
this study, the simulations are conducted utilizing the MRI mechanism.

Magnetospheric radius

In the accreting neutron star system the magnetic field of the neutron star can be
strong enough to truncate the disk at a radius known as Alfvén or magnetospheric
radius. The disk is truncated where the ram pressure is equal to the magnetic
pressure. At this radius accreting material is forced to follow the magnetic field
lines towards the neutron star pole, forming accretion columns. A basic estimation
of this radius by assuming the spherical accretion free-falling onto a dipolar magnetic
field was done by Elsner & Lamb (1977),

REL
m =

(
µ4

2GMṀ2

)1/7

= 3.2× 108Ṁ
−2/7
17 µ

4/7
30

(
M

M⊙

)1/7

cm, (1.1)

where µ30 = 1030µ with the magnetic moment µ and Ṁ17 = 1017Ṁ with the accretion
rate Ṁ . So the magnetospheric radius REL

m is proportional to Ṁ−2/7 µ4/7.
I note that numerical models are more complicated and the estimated magneto-

spheric radius does not precisely follow the analytical solution. In my simulations,
the inner part of the disk is radiation-dominated. The disk is nearly Keplerian and
although the radial velocity is large, it is a fraction of the free-falling velocity. Thus
it is expected that the numerical models may not be consistent with the analytical
solution.

8



1.1. ACCRETION POWERED X-RAY PULSARS

Corotation radius

A radius at which Keplerian angular velocity in the disk and the neutron star angular
velocity ΩNS are the same is called the corotation radius Rco,

Rco =

(
GM

Ω2
NS

)1/3

. (1.2)

If Rm ≤ Rco, accretion is possible and the angular momentum of the accreting
material may be transferred to the neutron star, causing its spin-up. Conversely,
when Rm > Rco the centrifugal force can be stronger than the gravitational force
causing the accreting material to be ejected. This may happen when the neutron star
is rotating rapidly enough and has a strong magnetic field. This scenario is known
as the propeller regime (Illarionov & Sunyaev, 1975; Papitto & Torres, 2015). The
propeller regime is not the subject of my study.

Spherization radius

The radius at which the total emitted radiation exceeds the Eddington limit is
referred to as the spherization radius Rsph (Shakura & Sunyaev, 1973). Within the
radius Rsph, radiation induces outflow which is discussed in the following subsection
‘Accretion rate’.

There are slightly different approaches to compute the spherization radius, as
detailed in the review paper by King, Lasota, & Middleton (2023). Here, I will
briefly discuss one method to compute this radius.

The spherization radius for the thin disk can be computed by equality of the
local radiative flux generated by viscosity Fvis (Frank, King, & Raine, 2002) within
the disk and the local Eddington flux: Fvisc = FEdd = LEdd/(4πR

2). This gives
the spherization radius Rsph = 15ṁrg, where the accretion rate is ṁ = Ṁ/ṀEdd

(ṀEdd is the Eddington accretion rate) and the gravitational radius is rg = GM/c2.
Considering that the outer region around the compact object can be strongly self-
irradiated, we can write FEdd = Fvis + Firr, with the equation irradiated flux Firr

given in Dubus, Lasota, et al. (1999). Thus, the spherization radius is

Rsph = 15

(
1− C

ṁ

2

)−1

ṁ rg, (1.3)

where the constant C ∼ 10−2 (Dubus, Hameury, & Lasota, 2001). However, the
spherization radius is computed for the thin disk model and is not accurately appli-
cable to my model.

Accretion rate

As the accreting material moves toward the compact object through the accretion
disk with the rate of Ṁ , it releases energy L. The released energy is a fraction η of
the accretion rate,

L = ηṀc2, (1.4)

where the parameter η represents the efficiency of gravitational mass-to-energy con-
version. In the Newtonian gravitational potential, if the disk ends at the radius 6 rg,
efficiency is 1/12. In the relativistic estimate for a geometrically thin disk around
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1.2. ULTRALUMINOUS X-RAY SOURCES

the non-rotating black hole, this value reaches 0.057 and for a maximally rotating
black hole, it increases to 0.4 (Shakura & Sunyaev, 1973). The efficiency for the
accreting neutron star with the radius 5 rg is about 0.1, as discussed in Syunyaev &
Shakura (1986).

If the accretion disk releases the energy equal to Eddington LEdd, then we can
define

ṀEdd =
LEdd

η0c2
(1.5)

where η0 is the assumed efficiency.
When the accretion rate is a small fraction of the Eddington accretion rate

(Ṁ ≲ 10−4ṀEdd), the disk becomes optically thin and does not cool efficiently. At
this rate, radiation pressure expands the disk. A similar model of the accretion
disk is known as advection-dominated accretion flow (ADAF), in which radiation is
advected with the gas (Abramowicz, Czerny, et al., 1988).

It has been known since Shakura & Sunyaev (1973) that super-Eddington (Ṁ ≳
ṀEdd) geometrically thin accretion disks result in luminosity surpassing the Edding-
ton luminosity (L > LEdd). When the spherization radius is larger than the ISCO in
a black hole super-Eddington geometrically thin accretion disk, the disk radiation
increases logarithmically,

L ≃ LEdd[1 + ln ṁ], (1.6)

where ṁ = Ṁ/ṀEdd. Thus, if the accretion rate is 100 ṀEdd the disk luminosity
is only ∼ 5.6LEdd. In this model, within the spherization radius Rsph, where the
emitted radiation becomes super-Eddington, strong radiation pressure drives pow-
erful outflows from the disk. However, in reality due to the high optical depths in
these disks, photons generated in the inner regions are advected over a significant
distance before diffusing out, leading to a substantial fraction of them being accreted
onto the black hole without escaping. In the case of an accreting neutron star, the
advected radiation is supposed to be reflected from the surface of the neutron star
(Houck & Chevalier, 1992; Ohsuga, Mineshige, et al., 2002).

In the accreting neutron star system, when accretion is super-Eddington, the
accretion channeled along the strong magnetic field lines becomes optically thick.
Thus, the radiation can not easily escape, the accretion column becomes radiation
pressure dominated, resulting in a radiation shock right above the neutron star
surface. Radiation escapes from the side of the accretion column while the accreting
material sinks through the dense magnetic field lines. The radiation shock was first
studied by Basko & Sunyaev (1976) and later by Mushtukov, Suleimanov, et al.
(2015); Revnivtsev & Mereghetti (2014).

1.2 Ultraluminous X-ray sources
ULXs are defined to have apparent X-ray luminosity LX ≥ 1039 erg s−1. Thus, LX is
above the critical Eddington luminosity for a compact object with a mass less than
10M⊙,

LEdd =
4πGMmpc

σT

= 1.26× 1038
(

M

M⊙

)
erg s−1, (1.7)

where mp is proton mass, σT is Thompson scattering cross section and M⊙ is the
solar mass.
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1.2. ULTRALUMINOUS X-RAY SOURCES

The principle progenitor could be a massive black hole that is accreting below
the Eddington limit, a neutron star, or a stellar-mass black hole (10M⊙) that is
accreting beyond its Eddington limit. ULXs are most likely X-ray binary systems
with a compact object accretor.

The first detection of ULXs was during the X-ray survey by Einstein and ROSAT
satellites. Fabbiano (1989) reported 16 ULXs with luminosities LX > 1039 erg s−1.
The number of detected ULXs increased quickly with Walton, Mackenzie, et al.
(2022) categorizing 1843 ULXs from 951 host galaxies based on data from the XMM-
Newton, Swift, and Chandra observatories. Several sources in this catalogue have
luminosities higher than 1041 erg s−1. There are 10 known magnetized neutron stars
and four transient Be-X binary systems between them. Most ULXs are found outside
the centers of galaxies, distinguishing them from AGNs. Additionally, the luminosity
of ULXs is less than AGNs (about 1042 erg s−1 for AGNs in nearby galaxies and about
1047 erg s−1 for quasars in distant galaxies).

The study of ULXs started by Colbert & Mushotzky (1999), where they inves-
tigated a sample of 20 ULXs with luminosities in the range of 1040 − 1042 erg s−1.
They suggest that the central accretor might be a black hole with a mass range
of 102 ≤ M/M⊙ ≤ 104, now called intermediate-mass black holes (IMBHs) (Mat-
sushita, Kawabe, et al., 2000).

The photon bubble instability in the accretion disk of a stellar mass black hole
M/M⊙ ≤ 10 was proposed by Begelman (2002). In this model, the instability occurs
because of the interaction between X-ray photons and the gas in the accretion disk.
X-ray photons transfer some of their momentum to the surrounding gas particles
causing the gas to heat up and expand, forming a bubble-like structure. Thus radi-
ation that escapes from this disk exceeds the predictions of standard accretion disk
theory. However, this model could not explain a luminosity higher than 1040 erg s−1

without beaming (see Lasota, 2024, and references therein).
In a different scenario, the magnetic fields of accreting neutron stars were sug-

gested to be responsible for a high radiation luminosity. In the presence of the
magnetic field ≳ 1014 G, the electron scattering opacity for X-rays reduces, allowing
large amounts of X-rays to escape (Canuto, Lodenquai, & Ruderman, 1971; Elsner
& Lamb, 1977; Herold, 1979). Paczynski (1992) showed that in the presence of a
strong magnetic field, the critical luminosity for an accreting star with the mass
1.4M⊙ is,

L ∼ 2× 1040
(

B

1014G

)4/3

erg s−1. (1.8)

This means that the magnetic field of B ≥ 1014 G is required for the luminosity
≳ 1040 erg s−1 (Mushtukov, Suleimanov, et al., 2015). However, in the review paper
by Revnivtsev & Mereghetti (2014), it is reported that the magnetic field of neutron
stars in X-ray binaries is observed to be lower than 1013 G. HMXBs exhibit peri-
odic X-ray pulsations indicative of magnetic fields around 1012 G, similar to what
is inferred from young radio pulsar spin-down rates. In contrast, the infrequency
of pulsations occurring in LMXBs suggests much weaker magnetic fields in these
typically older systems.

In a quite different scenario to describe the extremely high luminosity of ULXs,
King, Davies, et al. (2001) suggested that ULXs are powered by super-Eddington
accretion onto stellar-mass compact objects which could be black holes with mass
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Table 1.1: Observed and derived properties of some neutron star ULXs in KLK
model (King, Lasota, & Kluźniak, 2017) (updated in Lasota, 2024).

- Systems in the last four rows are transient and have confirmed or suspected Be–star companions.
1 - B obtained from detected magnetic moment µ assuming RNS = 106 cm and MNS = 1M⊙.
2 - System in the Galaxy: distance uncertain.

∼ 10M⊙, neutron stars or white dwarfs. In this scenario, the high accretion rate
plays a crucial role. As mentioned earlier, radiation pressure in a thin disk model
within Rsph drives powerful outflows. In the accreting neutron star system, there
are radiation-driven outflows between spherization and magnetospheric radii when
Rsph ≥ Rm. The strong outflows create a funnel-like optically thin region near the
polar axis. Consequently, the compact object emits its radiation within a fraction
b of the unit sphere, causing the luminosity to be overestimated by a factor of 1/b.
If b, known as the beaming factor, is sufficiently small, then the inferred isotropic
luminosity, Liso ∼ L/b (where L is the true luminosity), could easily reach values of
1039 − 1041 erg s−1 (King, 2009).

In the KLK model (King, Lasota, & Kluźniak, 2017; King & Lasota, 2019, 2020)
the period, spin-up and luminosity are considered to predict the strength of the
magnetic field and the beaming factor in accreting neutron stars. As mentioned
earlier, if the magnetospheric radius Rm is less than the spherization radius Rsph the
disk launches outflows that cause the beaming, which is estimated as a function of
the accretion rate ṁ = Ṁ/ṀEdd (King, Davies, et al., 2001) with,

b ≃ 73

ṁ2
. (1.9)

Utilizing Equations 1.6 and 1.9, one can estimate the apparent luminosity of the
accretion disk with an accretion rate of ṁ = 100 to exceed 800LEdd.

The magnetic field of the neutron star in KLK model is predicted to fall within
the range of 1010 to 1013 G with the majority of results falling between 1010−1011 G
(King, Lasota, & Kluźniak, 2017). Some of the observed and predicted properties
of neutron star ULXs in King, Lasota, & Kluźniak (2017) are shown in Table. 1.1.
This range is the basis for the selected magnetic field strengths in this thesis.
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1.2.1 Pulsating ULXs (PULXs)

Bachetti, Harrison, et al. (2014) discovered pulsation in ULX M82 X–2 with apparent
luminosity L ∼ 1.81040 erg s−1 and coherent periodicity P = 1.37 s. This discovery
showed that the accretor must be a neutron star with a super-Eddington accretion
which can produce the apparent luminosity more than 100 times its Eddington
luminosity.

After the first discovery of PULXs, more investigations reported pulsation in
ULXs with periods less than a second to 12 minutes (Chandra, Roy, et al., 2020;
Heida, Lau, et al., 2019; Brightman, Harrison, et al., 2018; Fürst, F., Walton, D.
J., et al., 2018; Carpano, Haberl, et al., 2018; Doroshenko, V., Tsygankov, S., &
Santangelo, A., 2018; Israel, Belfiore, et al., 2017; Townsend, Kennea, et al., 2017;
Tsygankov, S. S., Doroshenko, V., et al., 2017; Israel, Papitto, et al., 2016; Bachetti,
Harrison, et al., 2014; Motch, Pakull, et al., 2014; Trudolyubov, 2008).

After the discovery of the first PULX, Kluźniak & Lasota (2015) pointed out
that this source has an extremely high spin-up rate of 10−10 s−2 that is 2 orders of
magnitude higher than the one for normal X-ray pulsars. It demonstrates the torque
transfer to the neutron star by the accreting material through the magnetosphere.
King, Lasota, & Kluźniak (2017) and later Vasilopoulos, Petropoulou, et al. (2019)
assumed the spin-up rate of the accretion,

ν̇ =
J̇(Rm)

2πI
=

Ṁ(GMRm)
1/2

2πI
∝ Ṁ6/7µ2/7, (1.10)

where J̇ is the angular momentum accretion rate and I is the moment of inertia of
the neutron star with the magnetospheric radius Rm = REL

m (Eq. 1.1). Hence,

Ṁ ≈ 5.7× 1018ν̇
7/6
−10µ

−1/3
30 g s−1. (1.11)

Considering the efficiency of accretion LX = 0.1Ṁc2 (Lasota & King, 2023),

LX ≈ 2× 1038ν̇
7/6
−10µ

−1/3
30 erg s−1, (1.12)

Based on this equation, Lasota & King (2023) noted that the magnetic field strength
required to increase the radiation pressure luminosity to the observed isotropic lu-
minosity of PULXs (L ≫ LEdd) is inconsistent with the spin-up rates observed in
PULXs. This discovery rejected the idea of ULXs being powered by the accreting
onto extremely magnetized neutron stars: PULXs are not powered by accreting
magnetars but by pulsars with normal magnetic fields, as predicted by the KLK
model and the extraordinary luminosity of ULXs is caused by beaming.

The pulsations observed in PULXs when the neutron star is the accretor are
attributed to the effect of the inclination angle of the magnetic field relative to the
rotation axis of the neutron star. In some pulsating sources, the inclination angle can
affect the observed pulse fraction by changing the geometry of the system so that the
observed emission from pulsar changes along the line of sight (Bachetti, Harrison, et
al., 2014; Israel, Belfiore, et al., 2017). The magnetospheric and spherization radii
must be adjusted to generate adequate outflows for collimating the radiation without
overly obstructing the pulsations. The KLK model predicts that the magnetospheric
and spherization radii are similar (Rm ∼ Rsph).

Another interesting information understood from the study of PULXs is the
short duration of the spin-up phase that was studied by King, Davies, et al. (2001);
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Revnivtsev & Mereghetti (2018), and more recently by Lasota & King (2023). This
suggests that PULXs typically function as normal pulsar X-ray binaries for the
majority of their lifespan, transitioning into the PULX state during a distinct phase
in the evolution of their companions. A potential candidate for such a system could
be a Be–X binary that undergoes the transient phase.
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1.3 Numerical simulations

1.3.1 Previous works

Over recent years, the numerical modeling of accreting black holes has seen signif-
icant improvements, allowing for a more accurate and detailed study of these sys-
tems. An important development in the field of numerical simulations of accreting
black holes has been the utilization of general relativistic radiative magnetohydro-
dynamic (GRRMHD) codes (Narayan, Sądowski, et al., 2012; Sądowski, Narayan, et
al., 2013; Jiang, Stone, & Davis, 2014; Sądowski, Narayan, et al., 2014; McKinney,
Dai, & Avara, 2015; Sądowski & Narayan, 2016; Mishra, Fragile, et al., 2016; Chael,
Narayan, & Sądowski, 2017; Lančová, Abarca, et al., 2019).

There are only a few numerical simulations relevant for ULXs with neutron star
accretors. Takahashi & Ohsuga (2017) investigated supercritical accretion onto a
non-rotating, magnetized neutron star and its implications for ultra-luminous X-ray
pulsars. They performed 2.5D radiative GRMHD simulations of accreting ordinary
magnetized neutron stars with the dipole magnetic field of strength 1010 G, to show
that the disc is truncated at approximately three times the neutron star radius. The
angular momentum of the disk around the truncation radius is transported inwards
through magnetic torque by dipole fields, leading to the spin-up of the neutron
star at a rate of Ṗ ∼ −10−11. Their results support the hypothesis that PULXs
are powered by the supercritical accretion onto ordinary magnetized neutron stars.
They also investigated the possibility of supercritical accretion onto a neutron star by
comparing it with that of a black hole through 2.5D radiative GRMHD simulations in
(Takahashi, Mineshige, & Ohsuga, 2018). Those simulations show that supercritical
accretion onto a black hole is feasible due to its ability to swallow excess radiation
energy while it is challenging for a neutron star with a surface. However, they
found that the radiation force can be self-regulated by balancing with gravity and
centrifugal forces, resulting in a significant reduction in the mass accretion rate.
The strong radiation pressure-driven outflow around the neutron star forms. These
findings provide information about the dynamics of supercritical accretion onto a
neutron star and can help in the understanding of high-energy phenomena associated
with neutron star accretion.

Abarca, Kluźniak, & Sądowski (2018); Abarca, Parfrey, & Kluźniak (2021), run
the 2.5D radiative GRMHD simulations of super-Eddington accretion disks around
the black hole, non-magnetized non-rotating neutron star, and magnetized neutron
star with the dipole magnetic field of strength 2×1010 G. They conducted simulations
of accretion onto a neutron star and revealed that the formation of a transition layer
in the inner region of the disk results in a larger mass outflow rate and a lower
radiative luminosity than that of accretion onto a black hole. It is also found that
the total luminosity is about 2.5LEdd. The radiation is strongly directed by the
accretion disk outflows thus, the apparent isotropic luminosity, which is reliant on
the angle of observation, reaches a peak above 100LEdd, which is consistent with
the observed luminosities in ULXs.

Studies have also been conducted on the accretion column of magnetized neu-
tron stars, which may be linked to ultraluminous X-ray emissions. Kawashima,
Mineshige, et al. (2016), proposed a model to explain the pulsed emission observed
in ULXs. They studied the impact of the neutron star magnetic field on periodic
variation of accretion rate. By analyzing the behavior of the accretion flow and the

15



1.3. NUMERICAL SIMULATIONS

resulting X-ray spectra, using numerical simulations they found that the proposed
model can successfully reproduce the observed pulsation frequency and pulse shape
in PULXs. Kawashima & Ohsuga (2020) investigated the effect of general relativity
on the propagation of pulsed emission in PULXs. They simulated the behavior of
X-ray photons emitted from a pulsar in a strong gravitational field. The results
show that general relativistic effects can significantly alter the observed pulse shape
and amplitude of the emitted X-rays. The observed pulse fraction was found to be
affected by the inclination angle of the observer, with higher inclinations resulting in
larger pulse fractions. Overall, the findings of both studies (Kawashima, Mineshige,
et al., 2016; Kawashima & Ohsuga, 2020) contribute to our understanding of the
physical processes that govern the emission from PULXs.

The study by Zhang, Blaes, & Jiang (2023) presents a 2D axisymmetric radiative
relativistic MHD simulation of radiation pressure-supported neutron star accretion
columns in split-monopole magnetic fields. They found that the accretion columns
exhibit quasi-periodic oscillations with 2− 10 kHz peaks and broader extensions to
higher frequencies in the luminosity power spectrum.

Due to the increased complexity in developing 3D models of accreting magnetized
neutron stars, only a limited number of numerical simulations have been conducted.
Romanova, Koldoba, et al. (2021) used 3D simulations to study the effect of tilt
angle on the dynamics and structure of the accretion flow onto a magnetized rotating
star with a tilted magnetic field. The simulations revealed that the flow patterns
around the star strongly depend on the tilt angle of the magnetic axis. The tilt
angle has a significant impact on the magnetic field topology of the star, with low
tilt angles resulting in mostly axisymmetric fields and high tilt angles leading to
highly distorted and complex magnetic fields with multiple magnetic poles and non-
axisymmetric structures. The interaction between the accretion flow and the tilted
magnetic field was found to generate powerful outflows from the star. Radiation
was not implemented in these simulations.

Takasao, Tomida, et al. (2018) performed 3D simulations with Athena++ code to
study accretion onto weakly magnetized stars. They include the effects of radiative
cooling, which allows for the formation of a thermally unstable layer in the disk that
drives outflows from the disk surface.

Recently, Yang & Li (2023) investigated the long-term evolution of the magnetic
field inclination angle of accreting neutron stars in intermediate/low-mass X-ray
binaries. They studied the accreting neutron star with a dipole magnetic field that
is initially inclined with respect to the rotation axis. They found that the magnetic
inclination angle evolves with time due to the accretion of matter onto the neutron
star surface. Some neutron stars show significant changes in inclination angle over
time (see Yang & Li, 2023, and references therein).

Most recently 3D simulations of neutron star jets were performed by Das &
Porth (2024). They have shown that the magnetic field of the neutron star disk
plays a crucial role in launching the jet with power proportional to Φ2

jet, where Φ is
the open magnetic flux in the jet. They found that the inclination of the neutron
star magnetic field impacts the power of the jet. Murguia-Berthier, Parfrey, et al.
(2024), studied accretion onto oblique pulsars with 3D GRMHD simulations. They
have considered the magnetic field in the accretion disk as well as the tilted magnetic
field of neutron stars. The impact of dipole strength and obliquity on the power of
neutron star jets is studied.
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Although there have been notable numerical simulations of accreting neutron star
systems discussed in this section, most of the models are simplified. The dynamic
evolution of radiation is usually ignored. Additionally, the magnetic field in the disk
interacting with the neutron star dipole and super-Eddington accretion is not fully
studied. I include the dynamical evolution of radiation, high accretion rate, neutron
star dipole, and loop magnetic field in the torus in my study using the code and
numerical methods that are presented in the next section and Chapter 3.

1.3.2 General relativistic radiative magnetohydrodynamic code

Super-Eddington accretion onto a neutron star with a moderate magnetic field en-
tails numerous extreme physical conditions, such as extraordinarily high tempera-
ture and luminosity, strong gravitational force, rapid velocity, and intense magnetic
field. To accurately conduct numerical simulations of such a system, a robust magne-
tohydrodynamics (MHD) code that incorporates the equations of general relativity
(GR) and an effective radiation transfer scheme is indispensable. General Relativis-
tic Radiative Magnetohydrodynamic (GRRMHD) code Koral is suitable for these
simulations. The original Koral of Dr. Aleksander Sa̧dowski (Sądowski, 2011), is
currently maintained by Dr. Andrew Chael (Chael, 2024). Despite being utilized
by a limited number of research groups globally, Koral has proven its effective-
ness as a state-of-the-art tool for conducting advanced simulations of astrophysical
phenomena. A significant number of publications using this code studied accretion
systems of black holes and neutron stars (Sądowski, 2011; Sądowski, Narayan, et
al., 2013; Sądowski, Narayan, et al., 2014; Sądowski, Narayan, et al., 2015; Sądowski
& Narayan, 2016; Sądowski & Narayan, 2016; Abarca, Kluźniak, & Sądowski, 2018;
Lančová, Abarca, et al., 2019; Abarca, Parfrey, & Kluźniak, 2021; Chatterjee, Chael,
et al., 2023; Hallur, Medeiros, & Christian, 2023; Chael, 2024)

Given the extreme conditions inherent in these simulations, it was imperative to
execute a standard test problem to examine energy transformation within the MHD
simulations. In addition to Koral, I utilized the well-known MHD code Pluto to
compare the results for a test problem for MHD codes, the Orszag-Tang vortex. I
investigated energy transfer and reconnection rates in different models of relativis-
tic, non-relativistic, and resistive MHD. I also investigated how the resolution of
numerical simulations impacts the final results in both 2D and 3D simulations. I
estimated the numerical dissipation in Pluto simulations and have found the reso-
lution at which the numerical errors have the least impact on the results. The full
study was published in a paper (Kayanikhoo, Čemeljić, et al., 2023b) attached to
this thesis as Chapter 2. Part of the resolution study is published in a conference
proceedings paper (Kayanikhoo, Čemeljić, et al., 2023a). The MHD equations for
each model and a comparison of the codes are provided in detail in Kayanikhoo,
Čemeljić, et al. (2023b). In the following subsection, I briefly introduce the Koral
code, which is used to perform the accreting neutron star simulations presented in
this thesis.

1.3.3 Equations

The equations that are solved in Koral are as follows (Sądowski, Narayan, et al.,
2014):
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Koral solves the equations of radiative GRMHD which can be expressed in their
conservative form,

∇µ(ρu
µ) = 0, (1.13)

∇µT
µ
ν = Gν , (1.14)

∇µR
µ
ν = −Gν , (1.15)

which can be expressed in two or three dimensions. The gas density in the co-
moving fluid frame is denoted by ρ, and uµ represents the gas four-velocity. The
gas stress-energy tensor T µ

ν and the radiation stress-energy tensor Rµ
ν are coupled

by the radiation four-force Gν , making use of electron scattering, bremsstrahlung,
and synchrotron opacities as well as photon-conserving Comptonization (Sądowski
& Narayan, 2015).

The gas energy-momentum tensor is given as,

T µ
ν = (ρ+ p+ uint + b2)uµuν + (p+ b2/2)δµν − bµbν (1.16)

which includes the internal energy uint, the pressure p which is given by the ideal
gas equation of state, p = (γ − 1)uint with adiabatic index γ and the magnetic
four-vector bµ which is defined in terms of the electromagnetic field tensor Fλκ and
Levi-Civita tensor ϵµνκλ (Gammie, McKinney, & Tóth, 2003):

bµ =
1

2
ϵµνκλuνFλκ. (1.17)

The magnetic field is evolved using the induction equation as follows,

∂t(
√−gBi) = −∂j

(√−g(bjui − biuj)
)
, (1.18)

where Bi is the magnetic three-vector. The magnetic 4-vector is,

bt = Biuµgiµ, (1.19)

bi =
Bi + btui

ut
, (1.20)

where giν is metric.
Koral applies a Godunov-type shock-capturing method based on the MUSCL

scheme (Komissarov, 1999) to solve equations on a static grid. It offers various
reconstruction methods, while time integration employs an implicit-explicit second-
order Runge-Kutta scheme to handle the stiff radiation source terms. The numerical
implementation is thoroughly explained in Sądowski, Narayan, et al. (2013) and
Sądowski & Narayan (2015).

1.3.4 Radiation transfer: M1 closure scheme

I already mentioned that the time component of radiation stress-energy tensor is
evolved using Eq. 1.15. The scheme that is used in Koral to evolve the remaining
components of radiation stress-energy tensor (Rij) is called the M1 closure scheme
(Mihalas & Mihalas, 1984).

The M1 scheme assumes that there is a frame, characterized by the four-velocity
uµ
R, where the radiation stress-energy tensor is isotropic. Denoting the energy density

in that frame as Ē we have
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R̄µν = Ē uµ
R uν

R + Ēgµν . (1.21)

This closure scheme is a powerful tool that provides treatment of radiation in
astrophysical simulations. It is especially useful in modeling accretion discs, where
radiation plays a crucial role in the dynamics and energy balance of the system. One
of the advantages of the M1 closure scheme is its ability to capture the anisotropic
nature of radiation and its important radiative effects such as emission, absorption,
scattering, and advection.

Moreover, the M1 closure scheme allows radiation to propagate along geodesics
when in the optically thin regime while facilitating diffusion through the gas when in
the optically thick regime. This scheme results in a nearly symmetrical formulation
of both the gas and radiation components. The conservation equations are used to
describe the microscopic behavior of the gas while the radiative transfer equation
depicts the evolution of radiation.

While the M1 scheme is approximate when multiple light sources are involved,
it is still considered adequate for accretion disc simulations. In many cases, highly
anisotropic configurations with multiple beams are not commonly encountered in
accretion discs, making this scheme a suitable choice for modeling the dominant
radiation source.

1.3.5 Numerical methods

In Koral are defined two vectors of primitive, P = (ρ, uint, v
i, Bi, Ē, viR), and con-

served quantities, U = (ρut, T
t
t, T

t
i, B

i, Rt
t, R

t
i), (for definitions see Section 1.3.3

and 1.3.4), where the indices are i = 1, 2, 3. vi = ui/ut, viR = ui
R/u

t
R are the 3-

velocities of gas and radiation rest frame, respectively and Ē is the radiation energy
density in the radiation rest frame. The code evolves the conserved quantities. The
density, gas and radiation fields are evolved using Eqs. 1.13 to 1.15 and the magnetic
field using Eq. 1.18.

A semi-implicit/explicit method is used to evolve the equations forward in time.
The explicit step handles the advection and geometric source terms, while the im-
plicit step incorporates the radiative source terms, ±√−gGν . The following steps
are used in the code to evolve the quantities (detailed in Abarca, 2022):

• The minmod (Minimum mode) reconstruction is used for primitives. The
minmode reconstruction approximates data by retaining the most significant
components or modes, reducing complexity while preserving essential features.

• The magnetic fluxes are recomputed using the flux-CT (Flux Constrained
Transport) method. The flux-CT method ensures the divergence-free condi-
tion.

• The CFL (Courant-Friedrichs-Lewy) condition is used to compute the length
of the time step ∆t by finding the minimum signal crossing time, ∆xi/ai where
ai is the maximum signal speed and ∆xi is the length both related to the cell i.

• The left and right biased fluxes and conserved quantities are computed from
the reconstructed primitives, and the intercell flux is obtained by calculating
the left and right moving wave speeds and solving the Riemann problem using
the HLL (Harten-Lax-van Leer) Riemann solver.
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• The conserved quantities are evolved in time by summing the fluxes and the
geometric source terms.

• The cell centered primitives are then recovered using the new conserved quan-
tities using the function defined as U(P ) (Noble, Gammie, et al., 2006).

• Various constraints, such as floors and ceilings, are applied to the primitive
quantities to maintain code stability and prevent the occurrence of unphysical
values in quantities e.g. internal energy density, mass-density, and magnetiza-
tion.

• During the inversion of primitive/conserved quantities, numerical errors are
flagged, problem cells are fixed up, and numerical floors are applied.

• In every cell, a comparison is made between the radiative and gas energies to
determine which fluid energetically dominates.

• The Newton-Raphson numerical method is used to solve the implicit equations
either T t,(n+1)µ = T t,(n)

µ+G(n+1)
ν ∆t or Rt,(n+1)

µ = Rt,(n)
µ−G(n+1)

ν ∆t based
on the initial guess in the previous step.

• Second-order Runge-Kutta method (RK2) is used for the time evolution.

At the boundary, the grid cells are extended for a few number of cells, called
ghost cells which are not evolved in time. These cells are used to compute the
intercell flux at the boundary. These ghost cells are used for the inner boundary on
the surface of a neutron star (explained at the end of Section 3.1.2)

Mean-field dynamo

The mean-field magnetic dynamo is a useful tool in Koral that allows the axisym-
metric 2D accretion disk to run for extended periods.

In axisymmetric ideal MHD systems, there is no dynamo mechanism to regen-
erate the magnetic field (for the anti-dynamo theorem, see Cowling, 1933). Con-
sequently, the magnetic field decays during simulations, causing the accretion to
stop in a short time. However, running simulations in 2D is computationally much
cheaper than in 3D. To address this issue, Sądowski, Narayan, et al. (2015) intro-
duced a mean-field dynamo in Koral, which compensates for the missing dynamo in
2D simulations and drives the properties of turbulence towards those characteristic
of MRI instability in 3D simulations. Mean-field dynamo is tested by comparing
2D and 3D simulations and it accurately approximates the spatial properties of the
disk, accretion rate, surface density, and angular momentum (Sądowski, Narayan,
et al., 2015).
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Chapter 2

Paper 1: Energy distribution and
substructure formation in
astrophysical MHD simulations

In this chapter, I attach the paper (Kayanikhoo, Čemeljić, et al., 2023b), in which I
studied magnetic energy dissipation and structure formation in astrophysical simu-
lations. I performed numerical simulations of a standard Orszag-Tang test problem
for MHD codes in different models: ideal MHD in both non-relativistic and relativis-
tic models, resistive non-relativistic MHD model, each in two and three dimensions.
The main motivation of this project is to evaluate two high-performance state-of-the-
art codes in astrophysics, Pluto and Koral, by investigating the energy conversion
in astrophysical simulations. I estimate the numerical diffusion and have found a
good resolution in which the results are physical, with the least impact of numerical
error. I also demonstrated that Koral excels in capturing substructures in numer-
ical simulations with higher accuracy and exhibits reduced numerical dissipation
compared to Pluto.
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A B S T R A C T 

During substructure formation in magnetized astrophysical plasma, dissipation of magnetic energy facilitated by magnetic 
reconnection affects the system dynamics by heating and accelerating the ejected plasmoids. Numerical simulations are a crucial 
tool for investigating such systems. In astrophysical simulations, the energy dissipation, reconnection rate, and substructure 
formation critically depend on the onset of reconnection of numerical or physical origin. In this paper, we hope to assess the 
reliability of the state-of-the-art numerical codes, PLUTO and KORAL by quantifying and discussing the impact of dimensionality, 
resolution, and code accuracy on magnetic energy dissipation, reconnection rate, and substructure formation. We quantitatively 

compare results obtained with relativistic and non-relativistic, resistive and non-resistive, as well as two- and three-dimensional 
set-ups performing the Orszag–Tang test problem. We find sufficient resolution in each model, for which numerical error is 
negligible and the resolution does not significantly affect the magnetic energy dissipation and reconnection rate. The non- 
relati vistic simulations sho w that at suf ficient resolution, magnetic and kinetic energies convert to internal energy and heat the 
plasma. In the relativistic system, energy components undergo mutual conversion during the simulation time, which leads to 

a substantial increase in magnetic energy at 20 per cent and 90 per cent of the total simulation time of 10 light-crossing times 
– the magnetic field is amplified by a factor of 5 due to relativistic shocks. We also show that the reconnection rate in all our 
simulations is higher than 0.1, indicating plasmoid-mediated regime. It is shown that in KORAL simulations more substructures 
are captured than in PLUTO simulations. 

K ey words: dif fusion – magnetic reconnection – MHD – relativistic processes – methods: numerical – software: simulations. 

1  I N T RO D U C T I O N  

Dissipation processes in astrophysical plasma, including magnetic 
reconnection (Biskamp 2000 ), are of fundamental rele v ance for 
our understanding of a variety of observed systems, such as solar 
flares (Giovanelli 1946 ; Jiang et al. 2021 ) or magnetic substorms in 
the Earth’s magnetosphere (Akasofu 1968 ; McPherron 1979 ). The 
relative motion in plasmas and gas often leads to the formation of 
shocks. Non-relativistic magnetized shocks in supernovae remnants 
are possible sources of acceleration of cosmic rays (Chen & Arm- 
strong 1975 ; Blandford & Ostriker 1978 ; Bell 1978 ; van Marle, 
Casse & Marcowith 2017 ). Energy dissipation in the relativistic 
regime leads to spectacular displays, such as jets and relativistic 
ejections from the accretion systems around compact objects (Gi- 
annios, Uzdensky & Begelman 2009 ; Ripperda et al. 2022 ), or 
event horizon scale synchrotron emission (Mehlhaff et al. 2020 ) and 
flaring (Dexter et al. 2020 ; Wielgus et al. 2022 ) in the hot advection- 
dominated accretion flows. In the context of accretion onto compact 

� E-mail: fatima@camk.edu.pl (FK); miki@camk.edu.pl (MC) 

objects, understanding dissipation occurring on small spatial scales 
is crucial to finding realistic subgrid physics prescriptions for global 
simulations. 

Magnetic reconnection is a process by which the magnetic field 
lines in a plasma break and reconnect, releasing stored energy 
in the form of heat, particles/plasmoid acceleration, or radiation. 
Reconnection often occurs spontaneously and is usually associated 
with the presence of a current sheet, a region where the magnetic 
field lines become almost antiparallel and the plasma conductivity 
is finite. The magnetic field lines can break and reconnect due 
to the tearing instability, which is driven by the pressure of the 
plasma and the tension of the magnetic field (Coppi, Laval & 

Pellat 1966 ; Komissaro v, Barko v & Lyutiko v 2007 ; Del Zanna 
et al. 2016 ). Spontaneous reconnection is relati vely slo w, and the 
rate is determined by the local plasma conditions (Sweet 1958 ; 
Baty 2000 ). Petschek proposed a shock geometry that allows fast 
magnetic reconnection to occur (Petschek 1964 ), this may be real- 
ized in magnetohydrodynamic (MHD) simulations for large values 
of (anomalous) resistivity. In systems with strongly magnetized 
plasma, Lazarian & Vishniac ( 1999 ) state that reconnection will 
al w ays occur at some upper limit of the reconnection rate. Another 

© 2023 The Author(s). 
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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scenario is the forced magnetic reconnection, which occurs due to 
external perturbation in a turbulent system (Vekstein & Jain 1998 ; 
Potter, Browning, & Gordo vsk yy 2019 ; Sri v astav a et al. 2019 ). 
In this scenario, the reconnection rate can be much faster than 
spontaneous reconnection, as the external forces can overcome the 
moderating resistances of the plasma. Such turbulent systems can be 
found in various environments, such as solar wind, the interstellar 
medium, or the accretion discs around black holes and neutron 
stars. 

In this work, we study energy dissipation and magnetic reconnec- 
tion in the MHD framework, using a simple example of a vortical 
system, the Orszag–Tang (OT) vortex (Orszag & Tang 1979 ), a 
popular test problem for numerical MHD codes. In such a system, the 
magnetic field lines stretch and twist thus facilitating the reconnec- 
tion process. This test has already been performed with state-of-the- 
art codes like ATHENA ++ (White, Stone & Gammie 2016 ), BHAC 

(Oli v ares S ́anchez, Porth & Mizuno 2018 ), and HARM (Gammie, 
McKinney & Toth 2003 ). Here, we implement the OT test in two more 
state-of-the-art codes used in numerical simulations of accretion. 
We quantitatively compare results obtained with the two codes of 
our choice at different resolutions and set-ups in relativistic/non- 
relati vistic, resisti ve/non-resisti ve, and two-dimensional (2D) versus 
three-dimensional (3D) configurations, to study how much these 
different aspects impact the obtained results, characterized by the 
energy balance and reconnection rate. 

The well-established codes we selected for the comparison are 
the widely used, public PLUTO code (Mignone et al. 2007 ) and the 
radiati ve, general relati vistic code KORAL (S 

↪ 
ado wski et al. 2013 , 

2014a ). 
PLUTO has e xtensiv ely been used in simulations of magnetospheric 

star–disc interaction with alpha-viscous disc in Zanni & Ferreira 
( 2009 ) and Čemelji ́c ( 2019 ), with magnetorotational instability 
including alpha-dynamo in Flock et al. ( 2011 ), jet launching discs in 
Tzeferacos et al. ( 2009 ), accretion-ejection problem in Stepanovs & 

Fendt ( 2014 ), to mention only some. It was also used in the simu- 
lations of star–planet magnetospheric interaction, e.g. in Strugarek 
et al. ( 2014 ) and Varela et al. ( 2018 ) and related papers. A radiative 
module was included in simulations of accretion columns in classical 
T Tauri stars in Colombo et al. ( 2019 ). KORAL code is used to study 
the accreting compact objects in general relativity involving radiation 
using M1 closure scheme (S 

↪ 
adowski et al. 2013 ). The code has been 

used to study the radiative black hole accretion discs (S 

↪ 
adowski 

et al. 2014b ; S 

↪ 
adowski et al. 2017 ; Chael, Narayan & Johnson 2019 ; 

Lan ̌cov ́a et al. 2019 ) as well as super-Eddington accretion on to 
magnetized neutron stars (Abarca, P arfre y & Kluzniak 2021 ). 

The paper is organized as follows. In Section 2 , we re vie w 

the theoretical framework, including the formalism of the MHD 

equations. The initial conditions in the OT problem in 2D and 3D 

set-ups are given in Section 3 . In Section 4 , we discuss the results 
in different cases. The reconnection rate is studied in Section 5 . In 
Section 6 , we present the direct comparison of the results in the two 
codes we used here and we conclude in Section 7 . 

2  SPECIAL  RELATIVISTIC  RESISTIVE  M H D  

E QUAT I O N S  

We investigate the energy distribution in astrophysical simulations 
in the following set-ups: 

(i) Ideal non-relativistic magnetohydrodynamics (Ideal-MHD). 
(ii) Ideal relativistic MHD (Rel-MHD). 
(iii) Resisti ve non-relati vistic MHD (Res-MHD). 

We begin with presenting the resistive special relativistic MHD 

equations in Minkowski spacetime, which we then simplify to 
relativistic ideal MHD and non-relativistic resistive MHD cases. The 
simulations are performed in the PLUTO and KORAL codes, with the 
exception of Res-MHD, which is performed in PLUTO alone ( KORAL 

only treats non-resistive MHD equations). 
The dynamics of magnetic fluids can be described using the 

equations of conservation of mass, momentum, and energy, as well 
as the Maxwell–Faraday, Amp ̀ere–Maxwell, and Ohm equations. 
For a fluid propagating in the laboratory reference frame with bulk 
velocity υ = βc, the Lorentz factor is defined as � = (1 − β2 ) −1/2 , 
and the fluid four-velocity is u = ( � c, � υ). We denote fluid rest- 
mass density in the fluid frame by ρc 2 , fluid pressure by p , fluid 
internal energy density in the fluid frame by U int , electric field by 
E , and magnetic field by B . The E and B fields were redefined 
to absorb a factor of 1 / 

√ 

4 π each, so that factors of 1/(4 π ) do not 
appear in relations such as equations ( 2 ), ( 3 ), and ( 7 ). Furthermore, 
we define enthalpy density in the fluid frame, 

ω = ρc 2 + U int + p , (1) 

momentum density 

m = ω � 

2 υ + c E × B , (2) 

and the total energy density ε 

ε = ω� 

2 − p + 

1 

2 
( E 

2 + B 

2 ) . (3) 

The conservation equations are then 

∂ ( �ρ) 

∂ t 
+ ∇ · ( �ρυ) = 0 , (4) 

∂ m 

∂ t 
+ ∇ · [

ω � 

2 υυ + c 2 ( p I + T EM 

) 
] = 0 , (5) 

∂ ε 

∂ t 
+ ∇ · ( ω� 

2 υ + c E × B ) = 0 , (6) 

where additionally we denote identity matrix with I , and the electro- 
magnetic stress tensor with T EM 

, hence 

T EM 

= 

1 

2 
( E 

2 + B 

2 ) I − ( E E + B B ) . (7) 

The Maxwell–Faraday and Amp ̀ere–Maxwell equations are 

1 

c 

∂ B 

∂ t 
+ ∇ × E = 0 , (8) 

1 

c 

∂ E 

∂ t 
− ∇ × B = −J /c, (9) 

respectively, where J is the current density that comes from Ohm’s 
law, 

J = ( �c 2 /η)( E + β × B ) , (10) 

where η is the magnetic dif fusi vity, which is identical to resistivity. 
The additional condition ∇ · B = 0 from Gauss’s law is enforced 
during the numerical evolution of the magnetic field. 

In order to obtain the system of non-relativistic resistive MHD 

equations from equations ( 4 ) to ( 6 ), we make a number of approxi- 
mations based on β � 1 and p + U int � ρ assumptions, leading to 
a following formulation: 

∂ ρ

∂ t 
+ ∇ · ( ρυ) = 0 , (11) 

∂ ρυ

∂ t 
+ ∇ · ( ρυυ + p I + T EM 

) = 0 , (12) 
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∂ ε 

∂ t 
+ ∇ ·

[(
ω + ρ

υ2 

2 

)
υ + c E × B 

]
= 0 , (13) 

where the non-relativistic total energy and enthalpy densities are 

ε = U int + ρ
υ2 

2 
+ 

1 

2 
( E 

2 + B 

2 ) , (14) 

ω = U int + p . (15) 

Additionally, Ohm’s law in resisti ve non-relati vistic MHD becomes 

J = 

c 2 

η
( E + β × B ) = c ∇ × B , (16) 

neglecting the displacement currents ( ∂ E / ∂ t = 0) in equation ( 9 ) to 
obtain the second equality. 

The dif fusi v e time-scale, τ η = L 

2 / η (in conv entional units, if η is 
in cm 

2 s −1 and L is in cm, then τ η is in seconds) can be compared 
with the dynamical time-scale τυ = L / υ, where L is the characteristic 
length-scale of the system and υ is the characteristic velocity scale. 
The ratio of the two time-scales is known as the magnetic Reynolds 
number 

R m 

= 

τη

τυ

= 

υL 

η
. (17) 

When the typical velocity scale of the system is the Alfv ́en velocity 
υA = B/ 

√ 

4 πρ, this ratio is called the Lundquist number 

S = υA L/η. (18) 

Astrophysical systems often satisfy the condition S � 1, which is 
equi v alent to L � η/ υA . In such cases, for either relativistic or non- 
relativistic cases, we can use the ideal MHD approximation 

E = B × β. (19) 

As a consequence, E can be readily e v aluated and does not need 
to be evolved with the Amp ̀ere-Maxwell equation (equation 9 ), 
simplifying the Maxwell-Faraday equation (equation 8 ) for the B 

field evolution to 

1 

c 

∂ B 

∂ t 
+ ∇ × ( B × β) = 0 . (20) 

3  O R S Z AG – TA N G  TEST  PROBLEM  

With implicit inclusion of the most important features of MHD 

turbulent flow such as energy dissipation and magnetic reconnection 
(Orszag & Tang 1979 ; Dahlburg & Picone 1989 ) the Orszag–Tang 
vortex is a comprehensive test problem for MHD codes. This problem 

mostly tests the code performance in simulations with MHD shocks 
and shock–shock interactions. 

We study the energy distribution in different set-ups by per- 
forming the OT test problem simulations using two astrophysical 
simulation codes: PLUTO (version 4.4; Mignone et al. 2007 ) and 
KORAL (S 

↪ 
adowski et al. 2014a ). The description of our simulations 

is mostly presented in code units. These are obtained by scaling 
the equations with fiducial values of certain physical quantities. All 
velocities are scaled with v 0 = c , e.g. the statement that v A = 1 in 
code units signifies that the Alfv ́en velocity is equal to the speed of 
light. The density is scaled with some density ρ0 , the pressure with 
p 0 , and the electromagnetic fields with B 0 . The exact value of ρ0 is 
immaterial, as long as p 0 = ρ0 v 

2 
0 and B 0 = v 0 

√ 

4 πρ0 . 

3.1 Two-dimensional set-up 

The simulation is set up in a 2D computational box 0 ≤ x , y ≤ 2 π with 
periodic boundary conditions and the following initial conditions for 
velocity and magnetic fields (Ripperda, Bacchini & Philippov 2020 ): 

v = ˜ v ( − sin y, sin x, 0) , (21) 

B = 

˜ B ( − sin y, sin 2 x, 0) . (22) 

We adopt ̃  v = 0 . 99 v 0 / 
√ 

2 and ˜ B = B 0 . The initial density is uniform. 
In 2D, we perform the OT simulations in the range of uniform 

resolutions from 64 2 to 4096 2 in different set-ups (Ideal-MHD, Res- 
MHD, and Rel-MHD), doubling the number of grid points in each 
dimension to increase the resolution step by step. In 3D, we run 
the Ideal-MHD and Rel-MHD simulations in three resolutions 128 3 , 
256 3 , and 512 3 . Only with PLUTO , we run the Res-MHD simulation 
(in both 2D and 3D) in the resolution 512 3 . Without resistivity, both 
PLUTO and KORAL are used for Ideal-MHD and Rel-MHD simulations 
in 2D and 3D set-ups. 1 

All simulations run to the final time t = 10 t c , where t c is the light- 
crossing time across the typical length in the system. In code units, 
t c = L , and we take t c = 1. 

3.2 Three-dimensional set-up 

In order to study the difference between 2D and 3D MHD flows 
and reconnection, we extend the Orszag–Tang test problem to three 
dimensions. We set up the simulation in a cubic computational box 
0 ≤ ( x , y , z) ≤ 2 π with periodic boundary conditions. 

For the Rel-MHD simulations, the initial equations are chosen in 
such a way as to result in a realistic turbulent system, following the 
definition of a Taylor–Green vortex (Orszag & Tang 1979 ): 

v = ˜ v ( cos z sin y cos z, − sin x cos y cos z, 0) , (23) 

B = 

˜ B ( − sin y, sin 2 x, 0) , (24) 

where ˜ v and ˜ B are the same as in the 2D set-up. 
We find that such initial conditions do not result in a sufficiently 

turbulent outcome in non-relativistic simulations in 3D, so for Ideal- 
MHD and Res-MHD simulations in 3D we use different initial 
conditions, following Mininni, Pouquet & Montgomery ( 2006 ): 

v = ˜ v ( − sin y, sin x, 0) , (25) 

B = 

˜ B ( −2 sin 2 y + sin z, 2 sin x + sin z, sin x + sin y) , (26) 

where ˜ v = 2 v 0 and ˜ B = 0 . 8 B 0 . The initial density is uniform. 

4  E N E R G Y  C O M P O N E N T S  IN  T H E  RESULTS  

We study the dissipation of magnetic energy and investigate the 
conversion of energy by following the time evolution of the energy 
components: the electromagnetic energy density U EB = E B + E E = 

1 
2 ( B 

2 + E 

2 ), the kinetic energy density E K , and internal energy 
density U int . We study all components in the laboratory frame, thus 
the kinetic energy and internal energy densities in the relativistic 
simulations Rel-MHD are computed as follows: 

E K = ρ( � 

2 − 1) c 2 , (27) 

1 The physical resistivity module is publicly available only in non-relativistic 
PLUTO , and this is the one we use to perform our Res-MHD simulations. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/4/10151/7473712 by guest on 18 M
ay 2024



10154 F. Kayanikhoo et al. 

MNRAS 527, 10151–10167 (2024) 

Figure 1. The time evolution of B 

2 in PLUTO simulations: The Ideal-MHD case with different resolutions ( left panel ), and Res-MHD case with different 
physical resistivities η for the resolution of 512 2 ( right panel ). The unit of time is t c = L / c . 

U int = 

(
γ

γ − 1 
� 

2 − 1 

)
p. (28) 

Here, γ = 4/3 is the polytropic constant. In the non-relativistic limit 
(simulations Ideal-MHD and Res-MHD), the internal energy density 
becomes 

U int = 

p 

γ − 1 
, (29) 

while the kinetic energy density is 

E K = 

1 

2 
ρυ2 , (30) 

as can be seen from equations ( 13 ) and ( 14 ). Another quantity that 
is a function of space and time is the magnetization defined as σ = 

B 

2 /( ρc 2 ). 
We discuss and compare the averaged energy densities denoted by 

a bar and computed in 3D through 

Q = 

•
V 

Q d x d y d z 
•

V 

d x d y d z 

, (31) 

where V is the volume of the simulation box. In 2D, the corresponding 
formula is 

Q = 

“
S 

Q d x d y 
“

S 

d x d y 

. (32) 

The results in PLUTO and KORAL simulations are very similar both 
qualitati vely and quantitati vely. Unless stated otherwise, we present 
the PLUTO results. The KORAL results and details of their difference 
from the PLUTO results are discussed in detail in Section 6 . 

4.1 Ideal-MHD and Res-MHD simulations 

In this section, we estimate the numerical dissipation in the sim- 
ulations and study the effect of resistivity on the evolution of the 
system. In the left panel of Fig. 1 , we plot the time evolution of 
the averaged squared magnetic field B 

2 measured in Ideal-MHD 

simulations for different resolutions. It is clear that at later times 
the value of B 

2 increases with an increase in the resolution. This is 
because in grid-based codes the flux is computed o v er the surface 
of every grid cell. In such a calculation, there is some amount of 
computational dissipation, so-called numerical resistivity. Before we 
study the effect of physical resistivity in simulations, it is important 
to estimate the numerical dissipation at each resolution and find a 
reasonable minimal resolution. 

We compare the results in non-resistive Ideal-MHD simulations 
with the Res-MHD simulations set with different physical resistiv- 
ities ( η in equation 16 ), at each resolution. 2 In the right panel of 
Fig. 1 , the results obtained with the resolution 512 2 are shown. We 
compare B 

2 of the simulations with η = 0, 10 −4 , 10 −3 , 5 × 10 −3 . The 
curves corresponding to the Ideal-MHD and Res-MHD simulations 
with η = 10 −4 are almost o v erlapping, so at this resolution we 
estimate the numerical resistivity to be below 10 −4 and conclude 
that the resolutions higher than 512 2 are reasonably reliable for our 
simulations with the PLUTO code. 

The magnetic energy initially increases and then decreases, 
forming the hump at 2 t c in its plot (Fig. 1 ). This is caused by 
the compression of a region around a current sheet and subsequent 
formation of a reconnection layer (at t ≈ 2 t c ) which then dissipates 
the magnetic field energy. 

In Fig. 2 , we show the mass-density plots at t = 2.5 t c in the 
simulations Ideal-MHD (numerical resistivity below 10 −4 ) and 
Res-MHD (physical resistivity η = 10 −4 ) for the resolution of 

2 With a different set-up in PLUTO , Čemelji ́c, Vlahakis & Tsinganos ( 2014 ) 
found that for the numerical resistivity to decrease by an order of magnitude, 
the number of grid cells should be quadrupled, as also follows from the 
estimate with the characteristic length and dif fusi ve timescale, η = L 2 / t η . 
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Figure 2. The rest mass density at t = 2.5 t c in the resolution of 4096 2 with PLUTO in the Ideal-MHD simulations ( left panels ) and Res-MHD simulations with 
physical resistivity η = 10 −4 ( right panels ). Plasmoids, zoomed-in in the bottom panels, form only in a case with sufficiently low resistivity, corresponding to a 
Lundquist number larger than S ∼ 10 4 . 

4096 2 . In the left panel (Ideal-MHD), we have identified plasmoids 
(regions of higher density and lower magnetization relative to their 
surroundings), these are the substructures located in the central region 
of the simulation box. In the right panel (Res-MHD), the chain of 
plasmoids does not appear. Similarly, we see no such chain in the 
simulations with a resistivity larger than 10 −4 . The resistivity of 
10 −4 corresponds to the Lundquist number S = Lv A /η ≈ 10 4 , with 
the typical length-scale of the system L ≈ 1 and Alfv ́en velocity 
v A ≈ 1. This result matches theoretical studies which confirm 

that the current sheet is plasmoid unstable 3 at S > 10 4 (Loureiro, 
Schekochihin & Cowley 2007 ; Ripperda, Bacchini & Philippov 
2020 ). We also confirm that with a smaller physical resistivity ( η
< 10 −5 , S > 10 5 ) some substructures are resolved in the Res-MHD 

simulations. 
We compare the different terms in energy distribution (magnetic 

ener gy E B , kinetic ener gy E K 

, internal ener gy U int , and electric 
energy E E , respectively) in the Res-MHD simulations with η = 

5 × 10 −3 and η = 10 −4 (Fig. 3 ). The first row of this figure shows 
magnetic energy where the horizontal dashed line, located at E B = 

0 . 5, shows the initial value of magnetic energy. We see that with 
decreasing physical resistivity (from the left panel to the right panel) 

3 Plasmoid unstable current sheet involves a dynamic process where plasmoids 
merge and split within a sheet-like structure of magnetized plasma. 

the rate of magnetic energy decrease becomes smaller. The dissipated 
magnetic energy converts to the internal energy and heats up plasma 
as shown in the third row of this plot. We will discuss the energy 
components in Rel-MHD and Ideal-MHD simulations in the next 
section. 

4.2 Ideal-MHD and Rel-MHD simulations 

We compare the results of non-relativistic (Ideal-MHD) and rel- 
ati vistic (Rel-MHD) non-resisti ve MHD simulations in the PLUTO 

code. The different terms in energy distribution (magnetic energy 
E B , kinetic energy E K 

, internal energy U int , and electric energy E E , 
respectively) are shown in Fig. 4 . Panels in the left column show the 
results for Rel-MHD and in the right column for Ideal-MHD. 

The magnetic energy e volution, sho wn in the first row of panels 
in Fig. 4 , indicates that in simulation Rel-MHD the magnetic energy 
increases fivefold from the initial value of 0.5 (shown by the black 
dashed line in both left and right top panels). In the non-relativistic 
simulation Ideal-MHD, there is only a minor initial increase of the 
magnetic energy followed by a slow decay. 

The kinetic energy evolution is presented in the second row of 
Fig. 4 , where a black dashed line is also drawn for reference at 
the value of 0.5. The kinetic energies were computed using equa- 
tions ( 27 ) and ( 30 ) for the Rel-MHD and Ideal-MHD simulations, 
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Figur e 3. Ener gy distribution in Res-MHD simulations with physical resistivities η = 5 × 10 −3 ( left panels ) and η = 10 −4 ( right panels ) at the resolution of 
512 2 grid cells. The horizontal black dashed lines in the E B and E K 

panels indicate the initial value (0.5) of the magnetic energy E B (see the detailed discussion 
in Section 4.1 ). The dissipated magnetic energy heats up the plasma. 

respectively. In Rel-MHD, the effect of the Lorentz factor on the 
kinetic energy leads to an initial value of approximately 0.62, which 
is higher than the magnetic energy. In contrast, for the Ideal-MHD 

simulations, the initial value of the kinetic energy is approximately 
0.25, half the value of the magnetic energy . Initially , in Rel-MHD 

the kinetic energy amplifies the magnetic field, while in the non- 
relativistic Ideal-MHD case the low value of E K is not enough to 
amplify the magnetic energy. Thus, in Rel-MHD the effect of kinetic 
energy on the magnetic energy evolution in the second half of the 
simulation is significant, causing a secondary increase of E B . In the 
Ideal-MHD, no such effect is observed. 

In the third row of panels in Fig. 4 , we show the internal energy as 
computed from equations ( 28 ) and ( 29 ). Comparison with the first 

row of panels shows the conversion between magnetic energy and 
internal energy. 

In Rel-MHD, after t 	 5 t c , the large amount of the internal and 
kinetic energy amplifies the magnetic field. This is visible as the 
second increase (‘hump’) in the E B curve. Such an outcome in the 
Rel-MHD simulation offers an explanation for the energy reservoir 
in magnetized systems like relativistic jets in active galactic nuclei, 
accretion discs of black holes, and magnetized neutron stars in high- 
energy astrophysics. In the non-relativistic Ideal-MHD case, shown 
in the right panel, the released magnetic energy converts to internal 
energy and heats up the plasma. In contrast with the relativistic case, 
the amount of energy in the system is not enough to re-amplify the 
magnetic field. 
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Figur e 4. Ener gy distribution in Rel-MHD and Ideal-MHD PLUTO simulations at the resolution of 512 2 grid cells are shown in the ( left ) and ( right ) panels, 
respectively. The horizontal black dashed lines in the panels with E B and E K 

indicate the initial value of the magnetic energy E B = 0 . 5. See the detailed 
discussion in Section 4.2 . 

The final row of panels in Fig. 4 displays the electric energy, 
which exhibits a significant evolution in the Rel-MHD simulation. 
The electric field is a function of magnetic field and velocity (equation 
19 ). Consequently, when the magnetic field is increased around ∼2 t c , 
the electric energy E E also increases. Furthermore, as the system 

evolves, there is another subsequent increase in E E , coinciding with 
an increase in kinetic energy after 4 t c . 

The sum of all energy components in each of the simulations 
is conserv ed o v er time, as shown in Fig. 5 . The residuals in the 
total energy, | E resid ( t) | = | E tot ( t) − E tot (0) | /E tot (0), are displayed 
for the simulations Ideal-MHD, Res-MHD (with η = 5 × 10 −3 ), 
and Rel-MHD. Here, E tot is the sum of the magnetic, electric, 
kinetic, and internal energies displayed in Fig. 5 . The residu- 

als in the Ideal-MHD and Res-MHD in PLUTO simulation are 
≈3 × 10 −3 , in KORAL Rel-MHD ∼10 −4 , whereas, in the Rel- 
MHD case in PLUTO they are ≈10 −9 . This indicates that the 
numerical dissipation in the relativistic simulation is significantly 
lower than in the non-relativistic simulations. Also, the results 
indicate that Rel-MHD simulation in PLUTO is less dissipative than 
in KORAL . 

Space averaged magnetization in both simulations, Rel-MHD and 
Ideal-MHD, with the fixed resolution of 512 2 grid cells, is shown as a 
function of time in Fig. 6 . This shows once again how the relativistic 
system is strongly magnetized and the magnetization increases by 
the end of the simulation time, while in a non-relativistic simulation, 
the magnetization does not evolve significantly. 
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Figure 5. Residuals of total energy | E resid | = | E tot ( t) − E tot (0) | /E tot (0) in 
the Ideal-MHD and Res-MHD ( η = 5 × 10 −3 ) simulations with PLUTO (top 
two, nearly coinciding curves) and Rel-MHD simulations with PLUTO (bottom 

curve) and KORAL , with the resolution 512 2 grid cells. The conservation of 
energy is significantly more accurate in the Rel-MHD simulation, particularly 
in PLUTO . 

Figure 6. Magnetization ( σ = B 

2 / ρ in code units) in Ideal-MHD and 
Rel-MHD simulations with PLUTO at the resolution 512 2 grid cells. 

4.3 3D simulations 

We perform the OT test problem simulations in three dimensions 
in PLUTO and KORAL with the initial conditions of equations ( 23 ) 
and ( 24 ) in Rel-MHD simulations and with the initial conditions of 
equations ( 25 ) and ( 26 ) in Ideal-MHD and Res-MHD simulations. 

The time evolution of B 

2 in the Ideal-MHD simulations is shown 
in the left panel of Fig. 7 . We expect the current sheet to be 
resolved at time t 	 1.5 t c , because of the increase in magnetic energy 
discussed in the previous section. We search for the reconnection 
layers and plasmoids in different slices of the simulation domain at 
this simulation time. An example of a resulting rest-mass density 
plot is shown in Fig. 8 , which is a slice at z = π /2. The plasmoid (in 
the left panel) is shown at the center of the simulation box, which is 
zoomed-in at the bottom panel. 

We estimate the numerical resistivity at each resolution in Ideal- 
MHD simulations in 3D by comparing with Res-MHD simulations 
for dif ferent v alues of η. The plot of B 

2 with different physical 
resistivities η = 0, 10 −4 , 10 −3 , 5 × 10 −3 , in the resolution of 512 3 

grid cells is shown in Fig. 9 (the method is discussed in Section 
4.1 ). It is shown that the curves corresponding to η = 10 −4 resistive 
simulations and the non-resistive Ideal-MHD cases are convergent, 
so the numerical resistivity in Ideal-MHD simulations with PLUTO at 
the given resolution is estimated to be � 10 −4 . We expect that at this 
resolution the current sheets are well resolved. 

The rest-mass density plots in the Ideal-MHD simulations (left 
panel) and resistive Res-MHD simulations with η = 10 −3 (right 
panel) with the resolution of 512 3 are shown in Fig. 8 . The zoomed- 
in frames in the bottom panels show the substructure at the centre 
of each simulation box. From the configuration of the magnetic field 
which is not shown in this figure, we found that there is a thick 
current sheet containing a plasmoid in the Ideal-MHD simulation, 
which is not resolved in the Res-MHD simulation. 

The right panel in Fig. 7 shows the time evolution of B 

2 in the 
Rel-MHD simulation. It shows that B 

2 increases to the time t 	 7 t c . 
At the low resolutions, the magnetic energy drops after this time, but 
at the high resolution 512 3 , the peak is flattened. We found that at the 
smaller resolutions, due to the high numerical dissipation, the current 
sheets are compressed and plasmoids are not resolved. At the high 
resolution 512 3 , we can see the plasmoid unstable current sheets at 
different slices in the simulated cubic computational domain. 

We show the slice in the rest-mass density at z = π /2 in the 
Rel-MHD simulation with the resolution 512 3 in Fig. 10 , with a 
few magnetic islands in the simulation box. 4 We check the profile 
of magnetic field components and magnetization in that re gion. F or 
instance, we take a closer look at one plasmoid located at ( x , y ) = 

(4.7, 3.68). In the right panel, we show the profile of magnetic field 
components, magnetization, and mass density along the dashed line 
at y = 3.68 with x ∈ [4, 5.6]. The mass density ρ reaches a local 
maximum at the position of the plasmoid, while the parallel magnetic 
field component B x , and magnetization σ have a minimum local 
value. Such a profile confirms that there is a plasmoid at this point 
(Nathanail et al. 2020 ; Čemelji ́c et al. 2022 ). In the same Rel-MHD 

simulation, we made another slice, shown in Fig. A1 , through the 
same simulation box in the xz plane at y = 3.68 (where the black 
dashed line is in Fig. 10 ). In the top panel, we show the reconnection 
layer and plasmoids. The zoomed plots show the magnetization of 
the selected reconnection layer. In the next section, we estimate the 
reconnection rate at this chosen layer. 

Using the same method (just described for the 3D Rel-MHD 

simulation in the last paragraph), we choose the layer shown in 
Fig. A2 in the 3D Ideal-MHD run. 

5  R E C O N N E C T I O N  R AT E  

Magnetic reconnection might occur spontaneously due to the internal 
MHD instability in a resistive model (Sweet 1958 ; Petschek 1964 ) 
or in the ideal MHD as a kink mode (Baty 2000 ). In a turbulent 
system, the external perturbation can cause magnetic reconnection 
in a so-called forced reconnection, where the plasma is in a state 
of chaotic and unpredictable motion. The magnetic field lines can 
become distorted and twisted, leading to reconnection (Vekstein & 

Jain 1998 ). 

4 Magnetic islands are 2D slices through the structures that are plasmoids in 
3D. 
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Figure 7. The time evolution of B 

2 in 3D simulations with PLUTO for the simulations Ideal-MHD ( left panel ) and Rel-MHD ( right panel ). 

Figure 8. The slice in z = π /2 in the simulation box of the rest-mass density ρ for a vortex at t = 1.5 t c at the resolution of 512 3 in PLUTO . Left panel : Ideal-MHD. 
Right panel : Res-MHD with η = 10 −3 . The zoomed-in panels show the current layer in the middle of the simulation boxes. Plasmoids form only in the cases 
with sufficiently low resistivity, corresponding to a Lundquist number larger than 10 4 ( η � 10 −4 ). 
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Figure 9. The time evolution of B 

2 in 3D Res-MHD simulations with 
PLUTO , at the resolution 512 3 with different physical resistivities. 

Turbulent systems can be found in various environments, such as 
in the solar wind, in the interstellar medium, and in the accretion 
disks of black holes and neutron stars. In these environments, 
magnetic reconnection can lead to a variety of phenomena, such 
as the acceleration of particles to high energies, the formation of jets 
and flares, and the heating of the plasma. An external perturbation in 
turbulent plasma can accelerate the formation of the X-point, causing 
a reconnection one order of magnitude faster than spontaneous 
reconnection. Such a reconnection process is complex and still not 
well understood, and is an active area of research in astrophysics and 
plasma physics. There are analytical and numerical studies on forced 
magnetic reconnection including perturbation in the isolated current 
sheet (Vekstein & Jain 1998 ; Potter, Browning, & Gordo vsk yy 2019 ), 

and a study searching for the observational signatures of simulated 
forced reconnection in solar flares (Sri v astav a et al. 2019 ). 

The OT is a vortex problem, for which turbulence develops during 
evolution. It is shown in the rest-mass density plots (Figs A3 and A4 ) 
that the current sheets are not formed in isolation, but are a result of 
evolution of high-density regions, which are driven together by the 
evolution of the system. Therefore, fast reconnection is expected in 
our simulations. 

Fig. A5 in the Appendix shows selected reconnection layers in the 
chosen 2D simulations Ideal-MHD and Rel-MHD. When magnetic 
field lines reconnect, the magnetic tension acts to shorten the field 
lines and make a magnetic slingshot, which drives the outflow 

(plasmoids ejection) from both sides of the layer in the parallel 
direction (Dahlburg & Norton 1995 ; Linton, Dahlburg & Antiochos 
2001 ). 

For a steady-state reconnection, the outflow (from the reconnection 
area) should be balanced with the inflow (towards the reconnection 
layer) which is shown with the white arrows in the figure. The ratio 
of inflow and outflow velocity ( v in and v out , respectively) is called 
the reconnection rate v r = v in / v out . 

The outflow propagates along the background magnetic field lines 
with the Alfv ́en speed v A = c 

√ 

σ/ ( σ + 1) , in conventional units. 
When σ 	 10, v A 	 c , the reconnection rate can be approximated with 
v r = v in / c . The magnetization values on both sides of the reconnection 
layer in all simulations are greater than 8, as demonstrated in the 
Appendix (Figs. A1 , A2 , and A5 ). To compute the reconnection rate, 
we average the inflow velocity of 6 grid cells located on both sides of 
the layer. The structure of the layer is found by the Harris equilibrium 

method (Harris 1962 ; Ripperda, Bacchini & Philippov 2020 ). 
According to analytical and numerical studies, the reconnection 

rate in 3D might be both lower or higher than in 2D. The recon- 
nection rate depends on different parameters such as the initial set- 
up, strength of the magnetic field, and turbulence of the system. 
Čemelji ́c & Huang ( 2014 ) studied magnetic reconnection in 2D and 
3D geometries using resistive MHD simulations and found that the 
reconnection rate in 3D was approximately twice as fast as in 2D. 
Huang & Bhattacharjee ( 2016 ) found that in some cases the 3D 

reconnection rate can be lower than the 2D reconnection rate due 

Figure 10. Left panel : A slice of the rest-mass density at z = π /2 in the Rel-MHD simulation in 3D at a resolution 512 3 with PLUTO . The streamlines indicate 
the magnetic field lines and the white circles show plasmoids. Right panel : The magnetic field components, magnetization, and density profile along the black 
dashed line at y = 3.68, shown in the left panel. 
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Figure 11. The reconnection rate as a function of resolution in the 
simulations Ideal-MHD and Rel-MHD with KORAL . 

to the complex interplay between the plasmoid instability and the 
turbulent background. 

Our study presents various initial set-ups in both two and three 
dimensions (Section 3 ) that affect the magnetization on both sides of 
the connection region, which in turn influences the reconnection rate. 
Our Ideal-MHD simulations result in faster reconnection in 3D than 
in 2D, while the opposite is observed in the Rel-MHD simulations, 
where the reconnection rate is slower in 3D. In Fig. 11 , we show v r as 
a function of resolution in the simulations with KORAL simulations. 
We summarize the results of Fig. 11 as follows. 

In 2D set-ups: 
(1) Results of the Ideal-MHD simulations show that the resolution 

does not affect the reconnection rate in the resolutions ≥256 2 . We 
confirm that in the non-relativistic simulations, the current sheet 
is well resolved in the resolutions ≥256 2 (It is also shown in the 
top panels of Fig. 13 at t 	 2.5 t c that the curves of B 

2 ( t) at 
higher resolutions are convergent). In the lower resolutions, the 
reconnection rate changes as a function of resolution v r ≈ 0 . 04 ̃  R 

−0 . 7 

( ̃  R = R/ 100). 
(2) Results of the Rel-MHD simulations show that the reconnec- 

tion rate changes as a function of the resolution as v r ≈ 0 . 25 ̃  R 

−0 . 45 

in the resolutions ≤2048 2 . The current sheets and plasmoids are well 
resolved in the two highest resolutions. 

In both Ideal-MHD and Rel-MHD simulations in the lowest 
resolutions (64 2 and 128 2 ), the numerical resistivity is much higher 
than 10 −4 , and the current layer is not resolved. The reconnection 
rate converges to a constant value at a lower resolution in the Ideal- 
MHD than in the Rel-MHD simulations. Therefore, in Rel-MHD, 
it is necessary to increase the resolution with respect to the non- 
relativistic case to reach a reconnection rate limit that is resolution 
independent. 

In 3D set-ups, the current sheets are not resolved in the resolution 
128 3 . With the higher resolutions 256 3 and 512 3 , we do not see a 
significant effect of the resolution. In KORAL, the lo west v alue of 
reconnection rate in 2D simulations at the highest resolution is about 
0.1 in the Ideal-MHD and about 0.16 in the Rel-MHD. In 3D simu- 
lations, the value of the reconnection rate in the highest resolutions 
is around 0.3 in both Ideal-MHD and Rel-MHD simulations. 

Turning to the resisitive simulations, in Fig. 12 we plot the 
reconnection rates of Res-MHD runs with η = 10 −4 , 10 −3 , and 
5 × 10 −3 in the resolution 512 2 in 2D and 512 3 in 3D. The 
reconnection rate changes as a function of resistivity, increasing by 
a factor of about 60 per cent in the 3D case and 30 per cent in the 2D 

one, as the resistivity changes from 10 −4 to 5 × 10 −3 . This increase 
is much smaller than the factor 7.07 expected from the Sweet–Parker 

Figure 12. The reconnection rate as a function of resistivity for resistivities 
≥10 −4 ( Sweet , 1958) in 2D (red circles) and 3D (blue stars) Res-MHD 

simulations with PLUTO . The change is cosistent with 1/log S dependence, S 
being the Lundquist number. 

law ( v r ∝ η1/2 ). The dependence seems to be consistent with 1/log η, 
instead. 

Given our fairly low resolution and the small number of points, 
we cannot make definite claims about the functional form of the re- 
connection rate. Ho we ver, the reconnection rate we find is consistent 
with the dependence on the Lundquist number predicted in Petschek 
reconnection ( v r = a /log S , Petschek 1964 ). The proportionality 
constant is a = 0.34 for the 3D simulations 5 , and a = 0.10 for the 2D 

simulations. Here, we assumed v A L = 1 and we take logarithms to the 
base 10 (log ≡ log 10 ). Since our flow is not strongly magnetized nor 
highly turbulent, the reconnection rate in our resistive simulations is 
below the rates from Lazarian & Vishniac ( 1999 ). 

6  C O D E  C O M PA R I S O N  

The codes we used in our simulations, PLUTO and KORAL , rely on 
solving the MHD equations (given in Section 2 ) employing the finite 
volume method. The initial equations are typically formulated in 
terms of the primitive variables, which include the fluid density, 
pressure, and velocity, as well as the magnetic field (given in 
Section 3 ). To solve the equations using the finite volume method, the 
computational domain is divided into a grid of cells, each of which 
contains a set of conserv ed quantities. These conserv ed quantities 
are related to the primitive variables through a set of conversion 
equations, which are typically derived from the conservation laws of 
mass, momentum, and energy. Although both PLUTO and KORAL 

employ the same scheme to calculate conserved quantity fluxes 
at the boundary of each grid cell, the conversion of primitive to 
conserved quantities differs between the two codes. PLUTO employs 
the inversion scheme provided by Mignone et al. ( 2007 ), while KORAL 

uses the 1 D W 

inversion scheme outlined in Noble et al. ( 2006 ). 
We perform simulations of the OT test problem with PLUTO and 

KORAL codes in the simulations Ideal-MHD and Rel-MHD. The 
same initial conditions are used in both codes. Here, we compare the 
energy components in the results, the ability of the codes to capture 
substructures, and the reconnection rates. In Fig. 13 , we present the 
time evolution results for the magnetic energy in the Ideal-MHD and 
Rel-MHD simulations in PLUTO and KORAL . The value of B 

2 in the 
simulations Ideal-MHD slightly increases in KORAL with respect to 
PLUTO . This difference in the value of B 

2 is more obvious in the 

5 For the 3D simulation, v r is within ∼ 10 per cent of π /(8log 10 S ), assuming 
v A L = 1. An accurate fit to this formula can be found if we allo w v alues of 
the characteristic scale v A L to be slightly larger than unity. 
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Figure 13. Time evolution of B 

2 in simulations with different resolutions using PLUTO ( left panels ) and KORAL ( right panels ) for the simulations Ideal-MHD 

( top panels ) and Rel-MHD ( bottom panels ). The value of B 

2 is slightly higher in the simulations with KORAL . Note: The y -axis is common between left and 
right panels, and the legend is the same for all panels. 

lower resolutions and in the later time steps. In addition, in Fig. 5 , 
we showed that at the identical time steps of Rel-MHD simulation, 
the residual of the total energy in Rel-MHD in KORAL is typically 
slightly higher than the one in PLUTO . 

To investigate the difference between the codes, we plot in 
Fig. A6 of Appendix A relati ve dif ferences between KORAL and 
PLUTO of various quantities. In the Ideal-MHD simulations with 
sufficient resolution for the small numerical resistivity, both PLUTO 

and KORAL show almost the same numerical dissipation. In the 
Rel-MHD simulations, the difference between the codes is more 
pronounced. Also, by comparing the results in Ideal-MHD and Rel- 
MHD simulations in Fig. 13 , we find that the numerical resistivity 

is negligible at the largest resolution 4096 2 in the Ideal-MHD 

simulations (the curves of two larger resolutions o v erlapping) while 
in the Rel-MHD simulations, one should increase the resolution to 
obtain a negligible numerical error. 

As mentioned in Secton 4.1 , we expect the plasmoid unstable 
current sheets when there is a hump in B 

2 plot. We show the rest- 
mass density plot at t = 2.5 t c in the simulation Ideal-MHD and 
t = 9 t c in the simulation Rel-MHD at the highest resolution 4096 2 

in Appendix A , Figs A3 and A4 . These density plots confirm that 
KORAL is more precise than PLUTO in capturing the substructures. 

We compare the reconnection rate in the simulation Rel-MHD 

in PLUTO and KORAL in Fig. 14 . In Fig. A6 , we show that the 
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Figure 14. The reconnection rate as a function of resolution in simulations 
Rel-MHD in 2D and 3D. Red symbols indicate simulations with KORAL and 
blue symbols with PLUTO . 

residual relati ve dif ference between v arious quantities in the Ideal- 
MHD simulation is at the level below 1 per cent, so we only compare 
v r in the Rel-MHD simulation. 

We observe that in both 2D and 3D set-ups the reconnection rate 
in KORAL simulations is higher than in PLUTO simulations. The mag- 
netization on both sides of the reconnection layer directly affects the 
reconnection rate (which is discussed in Section 5 ), and we showed 
that in KORAL simulations the magnetic energy (and corresponding 
magnetization) is higher than in PLUTO simulations. This causes a 
higher reconnection rate in KORAL simulations compared to PLUTO 

simulations, as shown in Fig. 14 . 

7  SUMM A RY  A N D  C O N C L U S I O N S  

We investigate how the resolution and dimensionality of the simu- 
lation set-up affect the energy dissipation, substructure formation, 
and reconnection rate, all of which are critically dependent in astro- 
physical simulations on the onset of reconnection. We study these 
effects by performing the Orszag–Tang test problem in the numerical 
simulation codes PLUTO and KORAL . We perform a quantitative com- 
parison between the results obtained from various set-ups, including 
relati vistic, non-resisti ve MHD (Rel-MHD), non-relativistic, non- 
resistive MHD (Ideal-MHD), non-relativistic, resistive MHD (Res- 
MHD), in 2D as well as 3D simulations. 

First of all, we estimated the numerical resistivity of the simula- 
tions in each resolution to find a sufficient resolution in which we 
can resolve the substructures and study the energy conversion in 
our simulations. We used PLUTO code in resistive and non-resistive 
modes (Res-MHD and Ideal-MHD, respectively) in non-relativistic 
simulations. We show that the numerical resistivity in the resolution 
512 2 in both 2D and 3D set-ups is η ≈ 10 −4 , which is also the limit 
of the formation of a plasmoid unstable current sheet. 

After finding the sufficient resolution for o v ercoming the effects 
of numerical resistivity, we study energy conversion in Ideal MHD, 
Rel-MHD, and Res-MHD simulations. We showed that in Ideal- 
MHD and Res-MHD simulations magnetic energy converts into 
internal energy and heats up the plasma. In Ideal-MHD simula- 
tion a part of magnetic energy converts to kinetic energy which 
accelerates the plasmoids out of the reconnection layer. We also 
show that in Res-MHD simulations, as expected, the magnetic 

energy dissipation increases with increasing physical resistivity. In 
higher resistivity cases, there is a corresponding increase in internal 
energy. 

In relativistic simulations, Rel-MHD, we find that the relativistic 
shocks amplify the magnetic field with the magnetic energy E B 

increasing by a factor of 5 at t = 20 per cent of total simulation 
time. It is also shown that magnetic energy converts into internal and 
kinetic energies which amplify the magnetic field for the second time 
during our simulation. The second increase in magnetic energy at t = 

90 per cent of total simulation time is coincident with the formation 
of a set of plasmoid unstable current sheets. 

We also compare two state-of-the-art codes, PLUTO and KORAL , 
in both non-relativistic and relativistic simulations. Our findings 
indicate that in both Ideal-MHD and Rel-MHD simulations, KO- 
RAL simulations show higher magnetic energy, B 

2 , (implying less 
magnetic dissipation) compared to PLUTO with the difference more 
prominent at low resolutions. We show that in resolution 1024 2 , 
in the Ideal-MHD simulations, the relative difference of relevant 
quantities in PLUTO and KORAL is less than 10 −2 , while in the Rel- 
MHD simulations, for some quantities the residual reaches 0.1. In 
the highest resolution run (4096 2 ), we found that KORAL captures 
more substructures than PLUTO in both Ideal-MHD and Rel-MHD 

simulations. We show that the reconnection rate in all simulations 
in KORAL is higher than that in PLUTO – it is caused by higher 
magnetization in the reconnection layer region in KORAL . 

We study the effect of resolution on the reconnection rate v r in 
our simulations. As expected, numerical resistivity influences the 
reconnection rate. Increasing the resolution leads to a decrease in 
both numerical dissipation and reconnection rate. In 2D simulations, 
v r is initially a function of scaled resolution ( ̃  R = R/ 100) as 
v r ≈ 0 . 04 ̃  R 

−0 . 7 (Ideal-MHD) and v r ≈ 0 . 25 ̃  R 

−0 . 45 (Rel-MHD). In 
each set of simulations, we find a resolution beyond which the 
reconnection rate is no longer affected by the resolution, and we 
find the limiting reconnection rate in this limit: in 2D simulations in 
KORAL , in the Ideal-MHD runs, v r = 0.1 for resolutions ≥512 2 ; in the 
Rel-MHD, v r ≈ 0.18 for resolutions ≥2048 2 . In PLUTO simulations, 
the reconnection rate is lower than that in KORAL simulations. In 
PLUTO , in Ideal-MHD v r ≈ 0.03, in Rel-MHD v r ≈ 0.05. 

We infer that the Rel-MHD simulations should be performed at 
resolutions at least four times larger than in the non-relativistic Ideal- 
MHD simulations, to reach a negligible effect of the resolution on 
the reconnection rate. 

In 3D simulations in KORAL, the Ideal-MHD and Rel-MHD 

simulations are not directly comparable since we initialized the 
velocity and magnetic fields differently. Still, in both set-ups, the 
results are remarkably similar, with the effect of resolution on v r 
not significant in higher resolutions. In both Ideal-MHD and Rel- 
MHD simulations with resolution 512 3 the reconnection rate v r 	 

0.3 (Fig. 11 ). 
When comparing the reconnection rate in 2D and 3D set-ups, it 

is crucial to consider several parameters, such as the initial set-up, 
the strength and topology of the magnetic field, and the turbulence 
of the system. In set-ups with the equi v alent magnetization and 
turbulence levels, we show that the reconnection rate in 3D ideal 
MHD simulations is lower than that observed in 2D simulations. 
This trend is particularly notable in relativistic simulations when 
comparing the 2D and 3D set-ups. Ho we ver, in the resisti ve runs 
(Res-MHD) the trend is the opposite, the reconnection rate is about 
a factor of 3 smaller in 2D simulations than in 3D ones. We also 
show that in the resistive simulations, the reconnection rate seems to 
be well approximated by a v r ∝ 1/log η dependence, reminiscent of 
Petschek’s fast reconnection (Petschek 1964 ). 
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The results presented here add to the information needed to e v al- 
uate the behavior of numerical MHD codes in different set-ups. The 
performance of the codes can be e v aluated and compared only with 
a detailed account of the relation between the substructure formation 
and the amount of energy in each component. By using the standard 
Orszag–Tang test, we provided detailed quantitative information on 
energy components, reconnection rates and substructure formation. 
Our approach can be followed – and the results compared – for other 
codes. 

A caveat in our work here is that, because of the computational 
expense, we did not follow the convergence of the results in 3D 

up to the same resolutions as we did in the 2D set-ups. The new 

generation of simulations will una v oidably need such an update in 
benchmarking. The convergence of vorticity will be addressed in 
future work. 
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APPENDI X  A :  F O R M AT I O N  O F  PLASMOIDS  

In this Appendix, we provide additional figures to support the 
findings and conclusions presented in the main text. In particular, the 
plots presented here are intended to help visualizing the plasmoids in 
2D and 3D simulations, the reconnection layer and magnetization of 
the upstream region of the reconnection layer, and the comparison of 
numerical codes. The zoomed panels in Figs A1 and A2 correspond 
to the Ideal-MHD and Rel-MHD simulations, respectively, in 3D, and 
show a magnetization of σ ≈ 10 on both sides of the reconnection 
layer. 

The rest-mass density in the Ideal-MHD simulations with the 
resolution 4096 2 at t = 2.5 t c is shown in Fig. A3 . The zooms in 
the frames at the bottom panels show the chain of plasmoids in the 
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Figure A1. In the top panel is shown a slice in the rest-mass density at y = 

3.68 in the Rel-MHD simulation in 3D with PLUTO , at the resolution 512 3 . The 
white box shows the reconnection layer contains a plasmoid. The streamlines 
indicate the magnetic field. In the bottom panel we plot the magnetization of 
the selected region (white box). 

centre of the simulation boxes. In the KORAL simulation, there are 
more X-points, probably because of the lower numerical resistivity. 
The rest-mass density plot of the Rel-MHD simulation with the 
resolution 4096 2 is shown in Fig. A4 . This figure shows the result 
at a time t = 9 t c , with the second hump in B 

2 (discussed in Section 
4.2 ). There are two plasmoid unstable current sheets in the PLUTO 

simulation box, along the (0, π )–( π , 2 π ) and ( π , 0)–(2 π , π ) lines. 
In the KORAL simulation, two more current sheets are resolved in the 
bottom and top of the box, along ( π , 0)–(0, π ) and ( π , 2 π )–(2 π , 
π ). The zoomed frames at the bottom of this figure show the same 
regions in PLUTO and KORAL simulation boxes. 

Fig. A5 shows reconnection layers, the so-called magnetic dif- 
fusion region, in the Ideal-MHD simulation (top panel) and the 
Rel-MHD simulation (bottom panel). The colour bar indicates the 
magnetization. The solid lines with arrows represent the streamlines 
of the magnetic field, pointing in opposite directions around the 
reconnection layer. The reconnected line (slingshot) can be seen 
in the plasmoid region at (0, π ) in the Rel-MHD simulation in 
the bottom panel. This plot shows that the magnetization σ in the 
upstream region of the current sheet in the Ideal-MHD simulations 
in 2D is ≈8 and in the Rel-MHD simulations in 2D it is ≈10. 

In Fig. A6 , we plot the residual quantities R Q = | Q KORAL −
Q PLUTO | / Q KORAL ( Q represents the compared quantity) to clarify the 
difference between PLUTO and KORAL simulations. The black dashed 

curves correspond to the Ideal-MHD simulation and the blue solid 
curves correspond to the Rel-MHD simulation. We compute R Q in 

Figure A2. In the top panel is shown a slice in the rest-mass density at z = 

π in the Ideal-MHD simulation in 3D with PLUTO , at the resolution 512 3 . The 
white box shows the reconnection layer contains a plasmoid. The streamlines 
indicate the magnetic field. In the bottom panel , we plot the magnetization 
of the selected region (white box). 

the results with the resolution of 1024 2 , at which the numerical 
dissipation is small. In the Ideal-MHD simulation, the residuals of 
magnetic energy E B and magnetization σ are less than 10 −2 while in 
the Rel-MHD simulation, the residuals reach 0.1. In the Ideal-MHD 

simulation, the residual of kinetic energy E k is less than 10 −2 , while 
in the Rel-MHD simulation, it is less than 10 −1 . The residuals of 
internal energy U int and density d ≡ �ρ in the Ideal-MHD simulation 
are of the order of 10 −4 and in the Rel-MHD simulation they are of 
the order of 10 −2 . We conclude 10 per cent level code consistency 
for Rel-MHD and 1 per cent level consistency for non-relativistic 
Ideal-MHD simulations. 
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Figure A3. The rest-mass density ρ for a vortex at t = 2.5 t c in the Ideal-MHD simulation at the resolution of 4096 2 in PLUTO ( left panels ) and KORAL ( right 
panels ). Due to lower numerical dissipation, KORAL is more precise in capturing the substructure in the simulations. 

Figure A4. Rest-mass density ρ for a vortex at t = 9 t c of the Rel-MHD simulation with the resolution 4096 2 in PLUTO ( left panels ) and KORAL ( right panels ). 
Due to lower numerical dissipation, KORAL is more precise in capturing the substructure. 
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Figure A5. The reconnection layer is visible in the magnetization in 
simulations with KORAL at the resolution 4096 2 grid cells in the centre of 
the simulation box in the Ideal-MHD simulation ( top panel ) and along the (0, 
π )–( π , 2 π ) line in the simulation box in the Rel-MHD simulation ( bottom 

panel ). The streamlines show the magnetic field. 

Figure A6. The residual of quantities Q , R Q = | Q KORAL − Q PLUTO | / Q KORAL , 
in KORAL and PLUTO with the resolution 1024 2 . We show (from top to bottom ) 
the residuals for the magnetic energy, R E B 

, magnetization, R σ , kinetic energy, 
R E k 

, internal energy, R U int 
and density, R d . 
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Chapter 3

Study of Super-Eddington accretion
onto neutron stars with moderate
magnetic field

In this chapter, I present the numerical simulations of super-Eddington accretion
onto neutron stars with dipolar magnetic fields. The simulations are initialized with
an equilibrium torus with the loop magnetic field lines oriented in the opposite
direction of the dipolar magnetic field lines. The magnetic reconnection, during
the simulations, facilitates the accretion along the field lines to the surface of the
neutron star in the presence of a strong dipole field. The new interesting aspect of
this study is the dynamic evolution of radiation throughout the simulations.

I conduct two sets of simulations to study the impact of dipole strength and
super-Eddington accretion rate on the accretion structure and luminosity of neutron
star ULXs. In the first set of simulations, based on the KLK model (King, Lasota, &
Kluźniak, 2017), I vary the strength of the magnetic field of the neutron star in the
range from 1010 G to 1011 G, maintaining an accretion rate exceeding 200LEddc

−2.
In the second set of simulations, I fix the magnetic field of the neutron star and vary
the accretion rate in the range of about Ṁ = 100 − 1000LEddc

−2 for two distinct
magnetic field strengths, 1× 1010 G and 3× 1010 G. The objective is to characterize
an accreting neutron star system that exhibits apparent luminosity comparable to
that of ULXs. The key information of models is shown in Table. 3.1.

This chapter is organized into sections as follow. In Section 1.3.5, I introduce the
numerical methods used for the simulations, including the initial and boundary con-
ditions, computational resources, and relevant physical adjustments. In Section 3.2,
I discuss the first set of simulations with variation of the magnetic field strength of
the neutron star. Next in Section 3.3 are discussed the simulations which examine
the impact of the accretion rate. In the final section of this chapter, I summarize
and conclude the results.

The results of the study that address the impact of dipole strength on outflows
and beaming emission are prepared for submission to the "Astrophysical Journal
Letters" (ApJL). The remaining results will be compiled into a comprehensive paper
to be prepared after the submission of this thesis.
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3.1. SIMULATIONS DETAILS

Table 3.1: Models with different neutron star magnetic field B and accretion
rates Ṁ . The accretion rate is computed at the steady-state radius of 20 rg, and the
outflow rate Ṁout at 100 rg. The apparent luminosity Liso and minimum beaming
factor bmin are computed at distance 500 rg. The maximum simulation time of each
model is denoted by tmax.

B [G] Ṁ [LEddc
−2] Ṁout [LEddc

−2] Liso [LEdd] bmin tmax [tg]
1× 1010 257 325 115 0.016 50 000
2× 1010 320 317 100 0.020 50 000
3× 1010 345 250 90 0.023 50 000
5× 1010 355 150 68 0.026 50 000
7× 1010 430 190 45 0.045 50 000
1× 1011 490 80 39 0.083 50 000
1× 1010 120 65 42 0.05 40 000
1× 1010 900 4000 220 0.008 40 000
3× 1010 144 30 40 0.05 40 000
3× 1010 1000 3600 185 0.010 40 000

3.1 Simulations details
I conducted simulations of accretion onto a neutron star with a dipolar magnetic
field in GRRMHD code Koral. This section details the initial setup and boundary
conditions of the simulations.

3.1.1 Initial conditions

The simulations in this thesis are initialized with the equilibrium torus based on
the solution from Penna, Kulkarni, & Narayan (2013). The torus is initialized with
a polytropic equation of state. Outside of the torus the background atmosphere
is defined with density and internal energy of a few orders smaller than the initial
torus. As the torus solution given by Penna, Kulkarni, & Narayan (2013) is not
radiative, re-distribution of pressure is necessary, so that the pressure is divided
between gas and radiation, with the assumption of local thermal equilibrium (more
details are given in Abarca, Parfrey, & Kluźniak, 2021).

The torus has a single loop magnetic field defined with vector potential, Aϕ. The
MRI mechanism is utilized for angular momentum transfer during the simulation.
Since MRI requires a weak magnetic field, the torus is initialized with the ratio of the
total pressure of gas and radiation to the magnetic pressure β = (pgas+prad)/pmag =
10.

The initial stellar magnetic field is set up using the dipole potential from Wasser-
man & Shapiro (1983) and is adjusted to achieve various maximum surface field
strengths. The dipole and torus loops are oriented in opposite directions so that
when the simulation starts they converge and reconnect. This allows the material
to flow along the field lines and accrete onto the neutron star.
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3.1. SIMULATIONS DETAILS

3.1.2 Boundary conditions

The boundary conditions of the simulations are identical to that in Abarca, Parfrey,
& Kluźniak (2021) and are as follows:

Azimuthal boundary. The simulations in this thesis are in 2D axisymmetry
coordinates, meaning that there is only one grid cell in the ϕ dimension. In the
entire simulation, all quantities copy into the ghost cell of each direction.

Polar boundary. In the polar direction, the simulations are set in the angles
between zero and π. At the upper and lower boundaries (polar regions), all the
vectors and the factor sin(θ) of the metric will get zero value near the poles. To
address this problem we set the first two cells in the polar region to be ghost cells
to which we copy all quantities from the third cell.

Radial boundary. The outer boundary refers to the outer edge of the simulation
domain. In the r direction, gas, radiation, and magnetic fields are taken to flow out
of the simulation domain, with their quantities conserved across the boundary.

The inner radial boundary is the most difficult and challenging part. I use
the energy-reflecting boundary implemented in Koral by Abarca, Parfrey, & Kluź-
niak (2021). First, we treat the gas following the method given by Parfrey &
Tchekhovskoy (2017), where gas slides along magnetic field lines and falls smoothly
onto the surface of the neutron star. This is similar to setting an absorbing boundary.
Next, we treat the influx of kinetic, thermal, and radiative energy. The radiation
flux1 Rt

r is set to be equal to the negative value of the sum of the fluxes in two
ghost cells above the surface of the neutron star. This way the in-going energy
fluxes convert to out-going radiation flux. Then, we multiply Rt

r by the albedo
which indicates the percentage of the energy flux to be reflected from the surface of
the neutron star. In this study, I choose an albedo equal to 0.75. We then scale Rt

t

by Rt
r so that the energy is conserved across the inner boundary.

It is important to mention that the actual radiation flux at the inner boundary
is computed using a Riemann solver. In the ghost cells, the flux is defined to reflect
75% of the radiation. However, the HLL Riemann solver computes the flux at the
midpoint, with the left half taken from the ghost cell and the right half from the
domain cell. As a result, the actual reflection is expected to be less than the defined
value. So that, numerical artifacts in conditions of extremely high accretion rates
and strong magnetic fields may dominate the inner boundary conditions.

3.1.3 Simulation setup

The simulations are set on 2D grid with Nr × Nθ × Nϕ ≡ 510 × 512 × 1 cells.
The resolution is defined using the logarithmic spacing in the radial direction. The
computational domain in the radial direction is from the surface of the neutron
star at 5 rg to 1000 rg where rg = GM/c2 is the gravitational radius. In the polar
direction, the domain is from 0 to π as mentioned earlier.

1The radiation flux Rt
r is evolved in the code using Eqs. 1.14 and 1.15. In the diagonal metric

that is used in the computations of this chapter Rr
t = Rt

rg
rrgtt.
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3.2. STUDY OF THE IMPACT OF DIPOLE STRENGTH

The simulations are run longer than 40 000 tg where tg = GM/c3 is gravitational
time. The simulations are sufficiently long to allow the disk to reach a steady state.
Most of the results presented in this thesis are based on the time-averaged data.

3.1.4 Computational resources and tools

I performed the simulations on the Polish Grid Infrastructure PLGRID 2 with Prometheus,
and Ares supercomputers using 960 cores at a time running for three or four days
each, approximately one million hours of the computational time for all simulations
of this study including the test runs. To optimize computational resources, I care-
fully selected the resolution in each direction for our simulations, e.g. the grid-cells
in radial direction change logarithmically so that we define higher resolution closer
to the accretor to study the accretion column, outflows, and radiation flux.

The data analysis and post-processing have been done on high-performance com-
puters with 16 processors. Python, along with libraries such as Numpy (van der
Walt, Colbert, & Varoquaux, 2011; Harris, Millman, et al., 2020), Scipy (Gommers,
Virtanen, et al., 2024), Matplotlib (Hunter, 2007), and Pandas (McKinney et al.,
2010), was employed for data analysis. Additionally, I have used the software Visit3

for initial data visualization and on-the-run checking.

3.1.5 Physical adjustment

The neutron star has a mass of 1.4M⊙ and radius 5 rg. The spin of the neutron star
is neglected because of the maximum simulation time 50 000 tg where tg = GM/c3 ≃
6.90 × 10−6 s which gives the physical time ∼ 0.35 s i.e. less than the spin period
observed for ULXs. Considering that the star is not rotating in our model, I use the
Schwarzschild metric:

ds2 = gµνdx
µdxν = −

(
1− 2GM

c2r

)
dt2 +

(
1− 2GM

c2r

)
dr2 + r2

(
dθ2 + sin2 θ dϕ2

)
.

(3.1)
The equations are in the units of G = c = 1. For the plots, I use units with

accretion rate and luminosity in the Eddington unit LEdd/c
2 and LEdd, respectively.

The radius is shown in the units of gravitational radius rg = GM/c2.

3.2 Study of the impact of dipole strength
I conducted six simulations of accreting neutron stars with dipole magnetic fields,
with maximum strengths on the surface of Bmax = [1, 2, 3, 5, 7, 10]×1010 G. The sim-
ulations were initialized with a torus with the accretion rate exceeding 200LEdd/c

2.
Most of the results presented in this section are based on time-averaged data

from 15 000− 50 000 tg. I specify where snapshot data at a specific time are used.
A snapshot of simulations at time 35 000 tg is shown in Fig. 3.1, and the time-

averaged data is shown in Fig. 3.2. The magnetic field of each simulation is labeled
on each frame. The colormaps show the radiation energy density Ê [erg cm−3] in the

2Supported by computational grants no. PLG/2023/016648 and no. PLG/2022/015997 and
PLG/2021/015167

3https://www.visitusers.org/
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3.2. STUDY OF THE IMPACT OF DIPOLE STRENGTH

Figure 3.1: Snapshots in the results at time 35 000 tg. The left-half of each panel
shows the radiation energy density Ê and the right-half the rest-mass density ρ.
Magnetic field lines are plotted as contours of the vector potential, Aϕ.

left-half panels and the rest-mass density ρ [g cm−3] in the right-half panels. The
gray contours show the ϕ component of the vector potential, Aϕ.

As mentioned before, the dipole and magnetic field of the torus are initialized
with opposite orientations. During the simulation, the field lines converge and re-
connect. Reconnection allows the gas to accrete onto the surface of the neutron star,
as shown in the snapshot plots (Fig. 3.1). The magnetic field of the torus is initial-
ized similarly for all simulations. The strength of the dipole determines the radii in
which the reconnection occurs. In the simulations with a weak dipole (1010 G), most
of the dipole lines break, and matter gets very close to the neutron star surface be-
fore it follows the field lines. As the dipole strength increases, reconnection happens
further from the star. The dipole lines near the star remain unchanged, and matter
channels along these lines falls on the neutron star surface close to the polar region.
The stream of the dense matter in the midplane and accretion column can be seen
in both snapshot and time-averaged plots Figs. 3.1 and 3.2, respectively.

The time-averaged data shown in Fig. 3.2, indicate the trend in the radius where
the accretion disk is truncated by the neutron star dipole. The truncation location
moves farther away from the neutron star surface as the dipole strength increases.
This radius is known as magnetospheric (Alfvén) radius Rm. I compute Rm using
the time-averaged data of each simulation where the magnetic and ram pressures
are equal in midplane θ ∼ 90◦. I estimate Rm by including the radiation energy
density,
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3.2. STUDY OF THE IMPACT OF DIPOLE STRENGTH

Figure 3.2: The time-averaged data. The left-half of each panel shows the radiation
energy density Ê and the right-half the rest-mass density ρ. Magnetic field lines are
plotted as contours of the vector potential, Aϕ.
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3.2. STUDY OF THE IMPACT OF DIPOLE STRENGTH

Figure 3.3: The magnetospheric radius as a function of the dipole strength. The
red circles are the computed radii in each magnetic field simulation. The gray
circles are computed radii of each magnetic field simulation scaled by Ṁ2/7. The
red dashed line shows the fitted function on the computed data and the black solid
curve corresponds to the analytical solution of Elsner & Lamb (1977).

(ρ+
5

3
uint)v

2 + Ê =
B2

2
, (3.2)

where the Lorentz–Heaviside units are used, i.e. a factor of 1/
√
4π is absorbed into

the electromagnetic fields.
The magnetospheric radius Rm as a function of dipole strength is shown in

Fig. 3.3. In this plot, the red circles are the magnetospheric radius, Rm is computed
from Eq. 3.2. The accretion rate gradually increases with the strength of the dipole
of the neutron star (discussed in Section 3.2.1), therefore, I scale Rm with Ṁ2/7 based
on the analytical solution that shows the magnetospheric radius is proportional to
Ṁ−2/7 (see Eq. 1.1). The gray circles in Fig. 3.3 are the scaled values Rscl

m =
RmṀ

2/7 where Ṁ is accretion rate in the units of Eddington luminosities. The
red and gray dashed lines are the fitted functions on computed values Rm and Rscl

m ,
respectively. I also plot REL

m ∝ µ4/7 (Eq. 1.1). According to time-averaged data
from six magnetic field simulations, Rm as a function of the magnetic field follows
the analytical solution REL

m to a good approximation. I previously mentioned that
the analytical solution is based on certain assumptions, such as spherical accretion
of material along the field lines. However, in my simulations, the accretion process
is more complex. The accretion rate is high and the additional source of radiation
pressure in the inner part of the accretion disk has an impact on the magnetospheric
radius.

Next, I estimate the spherization radius is given by Rsph = 15ṁrg (ṁ is the
accretion rate in Eddington units), which varies between about 240−500 rg from the
weakest to the strongest magnetic field simulations. As mentioned in Section 1.1.1,
Rsph is defined for the geometrically thin accretion disk which is not comparable
with the model in my study. Additionally, Rsph in my model is located at the torus
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3.2. STUDY OF THE IMPACT OF DIPOLE STRENGTH

in which the accretion is not converged in the simulation time. However, I show that
in my simulations at the radii larger than Rm there are outflows as it was expected
in the KLK model.

3.2.1 Accretion and energy flow

I compute the accretion rate Ṁ(r), inflow rate Ṁin(r), and outflow rate Ṁout(r) by
integrating momentum density 4 ρur over the sphere at each radius of the accretion
disk and accretion column. The inflow rate is computed where ur is negative (flows
towards the accretor) and the outflow rate in the opposite direction. The equations
are as follows,

Ṁ(r) = −2π

∫ π

0

ρur
√−gdθ, (3.3)

Ṁin(r) = −2π

∫ π

0

ρur
√−gdθ

∣∣∣∣
ur<0

, (3.4)

Ṁout(r) = 2π

∫ π

0

ρur
√−gdθ

∣∣∣∣
ur>0

, (3.5)

where we can write Ṁ = Ṁin − Ṁout, and
√−g = r2 sin(θ) is the square root of the

metric determinant.
The accretion, inflow, and outflow rates are shown in the top, middle, and bottom

panels of Fig. 3.4, respectively. The results of each magnetic field simulation are
shown with different colors and line-styles. The radius at which the accretion rate is
constant is called the steady-state radius. The time-averaged data of my simulations
indicate that within radii less than 50 rg, the accretion rate Ṁ is approximately
constant across almost all magnetic fields. However, the steady-state radius moves
closer to the star as the magnetic field strength increases. This is likely due to
the convergence time in the simulation, with stronger dipoles requiring a longer
time for the disk to reach stability. This issue can be addressed by computing the
time-averaged data over a longer period in the stronger magnetic field simulations.
To compare the simulations and show differences, I used the same length of time-
averaged data for all simulations presented here.

In my simulations, the accretion rate increases as the dipole strength increases.
This can be addressed by checking inflow and outflow plots. In the presence of the
strong dipole, matter is channeled to the strong field lines and most of the material
accumulates in the inner radii so that the outflow is not significant. As the magnetic
field weakens, more outflows are driven and there is a thick outflow at radii larger
than 40 rg that gradually increases to larger radii. However, close to the neutron
star, outflow diminishes to zero in all simulations.

Energy flow

The energy flux F r is computed from plasma energy flux T r
t and radiation energy

flux Rr
t:

F r = −(T r
t +Rr

t). (3.6)
4I remind that ρ is rest-mass density and ur is the radial component of 4-velocity
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3.2. STUDY OF THE IMPACT OF DIPOLE STRENGTH

Figure 3.4: The accretion, inflow, and outflow rates are shown in the top, middle, and
bottom panels, respectively. Each magnetic field simulation is shown in a different
color and line-style.
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From the observational point of view, the total flux given in Eq. 3.6 is not an
interesting quantity because the gas energy-momentum tensor contains the rest-
mass density. To remove the rest-mass density, we add ρur to the total energy flux,
noting that the lower time index of tensors introduces a negative sign. Thus, the
total flux is written as

F r
tot = −(T r

t + ρur)−Rr
t. (3.7)

The radiation flux, denoted with F r
rad = −Rr

t, reflects the energy carried by radia-
tion which either propagates freely or advects with the gas. The plasma energy flux
T r

t + ρur decomposes to different forms of energy flux as follows,

T r
t + ρur = (ρ+ p+ uint + b2)urut − brbt + ρur

= γuintu
rut + (b2urut − brbt) + ρur(1 + ut),

(3.8)

where pressure is p = (γ − 1)uint, internal energy is uint, γ = 5/3 is the adiabatic
index, uµ is velocity 4-vector and bµ is magnetic four-vector (for definition of bµ see
Eq. 1.17). Eq. 3.8 is split into the following equations (Sądowski, Lasota, et al.,
2016): the internal energy flux,

F r
int = −γuintu

rut, (3.9)

the magnetic energy flux (for definitions see Section 1.3.3),

F r
mag = −(b2urut − brbt), (3.10)

and the remaining term in Eq. 3.7 which is called binding energy flux (Sądowski,
Lasota, et al., 2016):

F r
bin = −ρur(1 + ut), (3.11)

the binding energy flux contains the information about the gravitational and kinetic
energy fluxes, respectively, as follows,

F r
grav = −ρur(1−√−gtt), (3.12)

F r
ke = −ρur(ut +

√−gtt). (3.13)

One can also compute the non-relativistic limit of the energy fluxes e.g. the kinetic
flux in the Newtonian limit is ρvrv2/2, where vr is the radial component of three-
velocity and v2 is the square of three-velocity.

Next, I compute the luminosity of each energy flux by integrating the corre-
sponding flux over the sphere at each radius,

LEN = 2π

∫ π

0

F r
EN

√−gdθ, (3.14)

where the form of energy flux is defined by index EN. The total luminosity decom-
poses into the gravitational, kinetic, thermal, magnetic, and radiation luminosity,

Ltot = Lgrav + Lke + Ltherm + Lmag + Lrad. (3.15)

I compute the efficiency of each form of energy output by dividing each luminosity
by Ṁ c2 at the radius 20 rg, where the accretion rate in all simulations reaches
remains constant. The dimensionless efficiency η = LEN/(Ṁc2) for the simulations
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with dipole magnetic fields of 1010 G and 1011 G is shown in Fig. 3.5. From this plot
one can infer the radii up to 50 rg where the simulations have converged and the
accretion disk is stable. Within these radii, the total energy should remain constant,
meaning that energy does not accumulate at any radius of the disk. The blue-solid
line in each frame indicates the efficiency of the total luminosity. The total efficiency
with a magnetic field of 1010 G is approximately ∼ 0.08, while in the simulation with
a magnetic field of 1011 G, it is reduced to approximately ∼ 0.03. This suggests that
in my simulations, in the presence of a strong dipole magnetic field, accretion is
less efficient. This can be attributed to the geometry of the magnetic field in each
simulation.

To clarify lower efficiency in the presence of the stronger dipole, I step back and
show the snapshots of both magnetic field simulations in Fig. 3.6. Similar to Fig. 3.1,
the colormap is the rest-mass density and white contours are vector potential, Aϕ.
Each row corresponds to one magnetic field simulation, with 1010 G and 1011 G
depicted at the top and bottom rows, respectively. Progressing from left to right
within each row, snapshots are presented at times [0, 10 000, 20 000, 30 000 ] tg. The
red solid line in each frame is a guideline showing the propagation of the density in
each magnetic field simulation. As mentioned in the description of Fig. 3.1, when
the simulation starts, dipole and torus field lines interact and reconnect. In the
weak dipole, almost all dipole field lines break, and outflows can propagate to high
latitudes, as shown in the first row of Fig. 3.6. In contrast, in the presence of a
strong dipole, the dipole lines close to the surface remain unchanged material flows
along field lines. After reconnection, the strong magnetic field lines close to the
neutron star surface keep the outflow at low latitudes and reduce the turbulence. It
causes a small efficiency in the presence of a strong dipole.

As material flows toward the accretor, it releases binding energy, while closer
to the star the gas becomes more bound. The binding luminosity, represented by
the violet-dotted curve in Fig. 3.5, demonstrates this phenomenon. It was shown in
Eqs. 3.11 - 3.13, where the gravitational flux is decomposed into binding and kinetic
fluxes, shown by the red-dotted and green-dashed lines in Fig. 3.5, respectively.

The negative values in each curve indicate that the proportion of the flux ad-
vected inward with the gas is larger than the proportion that is released. This is
evident in the curve depicting kinetic efficiency. In radii close to the star, the ki-
netic efficiency is negative, indicating that the kinetic energy of Keplerian motion
is brought inward by the gas. As the radius increases, the kinetic energy diminishes
to zero, where the proportions of advected and released kinetic energy are nearly
equal. I note that at larger radii, the kinetic efficiency increases to positive values,
corresponding to a significant amount of outflows (discussed in Section 3.2.2).

The gray dashed-dotted lines represent the efficiency corresponding to the mag-
netic luminosity Lmag. Magnetic energy facilitates the transfer of released energy
from the innermost part of the disk and column outward and redistributes this energy
to the outer region. In the weak magnetic field simulation, the magnetic luminosity
surpasses that of simulations with stronger magnetic fields. In the simulations with
a strong magnetic field ingoing and outgoing magnetic fluxes are balanced resulting
in a net value that diminishes to zero as depicted in the frame of strong magnetic
field simulation (1011 G).

Internal energy in each simulation is negligible (brown dashed-dotted line along
zero) since radiation cools down the accretion disk. The radiation luminosity, shown
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Figure 3.5: The efficiency L/(Ṁc2) of total luminosity and its components for two
simulations with dipole 1010 G (top) and 1011 G (bottom). Each efficiency is denoted
by a different color and line-style.

50



3.2. STUDY OF THE IMPACT OF DIPOLE STRENGTH

Figure 3.6: The rest-mass density in colormaps and magnetic potential, Aϕ as con-
tours. Each column shows one snapshot of the labeled time and the top and bottom
rows show 1010 G and 1011 G simulations, respectively. The red solid lines are a
guideline to show how material propagates to the higher latitudes in the lower mag-
netic field simulation.

by the brown dotted curve, reaches negative values close to the neutron star, indi-
cating that most of the radiation is advected with the gas, this is caused by the
well-known photon-trapping phenomena (detailed study by Ohsuga, Mineshige, et
al., 2002; Sądowski & Narayan, 2016). Radiation luminosity is discussed in detail
in Section 3.2.3. However, in the case of the accreting neutron star, the advected
radiation is expected to be released on the surface of the neutron star. Here, I
use energy-reflective boundary conditions (Abarca, Parfrey, & Kluźniak, 2021) at
the surface of the neutron star, despite the numerical challenges inherent in mod-
eling these extreme conditions in this thesis (see the discussions of radial boundary
conditions in Section 3.1.2).

3.2.2 Power of the outflow

The outflow of matter is an important phenomenon in the study of ULXs. Early
computational predictions were discussed in Section 1.2. Super-Eddington accretion
onto the neutron star drives a powerful outflow which causes the collimation of
radiation flux and extraordinary apparent luminosity. In this section, I study the
kinetic energy carried out by the outflowing gas. The impact of outflow on luminosity
is discussed in Section 3.2.3.

In Fig. 3.7 are shown the momentum density, ρur multiplied by 2πr sin(θ) in
the units of [LEddc

−2r−1
g ] for three dipole simulations. The streamlines show the

direction of the flow. The red dashed line is the zero Bernoulli (Be = 0) surface.
The relativistic Bernoulli parameter is computed as:

Be = − T t
t +Rt

t + ρut

ρut
, (3.16)
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Figure 3.7: The momentum density ρur multiplied with 2πr sin(θ) in the units of
[LEddc

−2r−1
g ]. The negative values represent inflow and the positive values represent

outflow. The red dashed line is the zero Bernoulli surface. The streamlines show
the direction of the flow. The magnetic field is labeled above each frame.

Figure 3.8: The efficiency of outgoing kinetic luminosity computed in outflow region
(Be > 0, ur > 0). The strength of the dipole in each simulation is shown in a
different color and line-style.
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with T t
t and Rt

t being the MHD and radiation energy densities, respectively. In
steady-state Be is zero along the red-dashed line in Fig. 3.7. Above this surface
Be > 0 the gas is energetic enough to reach infinity on its own. The gas within the
zero Bernoulli surface Be < 0 is bounded energetically. However, the outgoing gas
within this surface still may impact the luminosity.

In Fig. 3.7, the negative values represent in-falling gas, while positive values
represent outgoing gas. From left to right panels, the dipole strength increases. In
the simulation with a magnetic field of 1010 G, the outflow propagates to angles close
to the polar axis, resulting in a narrow cone-like optically thin region. The radiation
flux escapes towards the observer freely through this region. It is shown that with
increasing the strength of the dipole by one order of magnitude (1011 G), the outflow
decreases, and the cone-like region widens.

The kinetic luminosity of outflows is computed by integrating the outgoing ki-
netic flux with Be > 0,

LKE = −2π

∫
(ut +

√−gtt)ρu
r
√−gdθ

∣∣∣∣
Be>0, ur>0

. (3.17)

The kinetic efficiency of outflows is shown in Fig. 3.8. At the radii r ≥ 60 rg, the
efficiency of kinetic luminosity increases as the magnetic field weakens. Close to the
star, at r ≤ 20 rg, there is no outflow and outgoing kinetic energy is zero.

In summary, my simulations show that the power of outflow increases as the
dipole weakens. At a radius of 100 rg, the efficiency of kinetic luminosity reaches
0.5% for a dipole strength of 1010 G. This value is reduced to 0.1% for a dipole of
1011 G. In the weak dipole simulation, a thick outflow propagates towards the polar
axis of the neutron star, creating a narrow cone-like, optically thin region. This
region widens as the dipole strength increases. The impact of dipole strength on the
radiation luminosity is discussed in the following section.

3.2.3 Radiative luminosity and beaming emission

The main subject of this thesis is a study of the radiation luminosity. In this section,
I compute the radiation luminosity in different regions of the system to clarify how
the radiation luminosity is affected by the outflow. Then, I discuss the radiation
luminosity in optically thin region that can reach the observer. Finally, I compute
the apparent luminosity, which is of interest from the observation point of view.

I start with computing the optical depth in two directions of r and θ, τr and
τθ, respectively, to separate the optically thin and optically thick regions in each
direction. The optical depth in r direction is computed as follows,

τr(r) =

∫ rout

r

ρκes
√
grrdr, (3.18)

where rout is the outer boundary of simulations and the optical depth in θ direction
is computed as,

τθ(θ) =

∫ θ

0

ρκes
√
gθθdθ, (3.19)

where κes = 0.34 cm2 g−1 is the electron scattering opacity for solar composition and
rout the outer boundary of the simulation.
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Figure 3.9: The colormaps show optical depth τr (top panels) and τθ (bottom panels).
Each column shows the simulation results with one dipole strength. The streamlines
show the direction of the radiation.
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In Fig. 3.9, the optical depth τr and τθ are shown for three different magnetic
field simulations. In the first row, we find that the optical depth τr decreases from
the equator (along the accretion disk) towards the polar axis. The dark green color
in the colormap indicates the value τr = 1 (photosphere in the radial direction). As
discussed in Section 3.2.2, strong outflows create a cone-like optically thin region
near the polar axis. This region, depicted in orange in Fig. 3.9, is narrow in the
presence of a weak dipole (1010 G) and gradually widens as the dipole strength
increases. The streamlines illustrate the direction of radiation flux, indicating that
in the cone-like, optically thin region, radiation propagates radially outward toward
the observer.

In the second row of Fig. 3.9, τθ indicate that in the region above the accretion
column up to the radius of about 20 rg, where there is no outflow (as described in
Section 3.2.2) the optical depth is about 10−4 (shown with the blue color). This
means that radiation can escape from the accretion column freely. The dark-green
color in this plot shows the photosphere in the polar direction τθ = 1. The geometry
of this line depends on the accretion disk/column structure. From the weak dipole
(1010 G) to the strong dipole (1011 G) polar photosphere widens. The radiation
flux direction depicted by streamlines that in the weak dipole (1010 G) most of the
radiation moves from the optically thick (disk and accretion column) to the optically
thin region at each radius while with the strong dipole (1011 G) most of the radiation
flux at r ≳ 20rg is advected with gas and moves towards the neutron star.

The total luminosity is computed by integrating radiation flux over the polar
domain (0 < θ < π). The luminosity above the zero Bernoulli surface (Be > 0)
and luminosity within the photospheres where τθ < 1 and τr < 1 are computed by
integrating radiation flux in each region, respectively,

Ltot = −2π

∫ π

0

Rr
t

√−gdθ, (3.20)

LBe = −2π

∫
Rr

t

√−gdθ|Be>0, (3.21)

Lθ = −2π

∫
Rr

t

√−gdθ|τθ<1, (3.22)

Lr = −2π

∫
Rr

t

√−gdθ|τr<1. (3.23)

The radiation luminosities for two dipole simulations (1 × 1010 and 1 × 1011 G)
are shown in Fig. 3.10. Each simulation is shown in a separate frame, with different
colors and line styles representing the various luminosities. Ltot, Lθ and LBe show
negative values at radii close to the neutron star due to the inclusion of radiation
flux advected with the gas which is a large proportion of the radiation flux. This
is related to the photon-trapping phenomenon (Ohsuga, Mineshige, et al., 2002;
Sądowski & Narayan, 2016). The negative values of Ltot and LBe occur at a larger
radius for the stronger dipole simulation. In the strong magnetic field simulation,
along the accretion column at radii ≲ 10 rg, the magnetic field lines and the stream
of accreting material are very dense so that radiation flux is mostly advected with
accreting material while in the weak magnetic field simulation, accreting material
reaches to the radius very close to the surface of the neutron star. The density of
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Figure 3.10: The radiation luminosities in two dipole simulations in different regions
as introduced in Eq. 3.20 - 3.23. Each luminosity is shown in a different color and
line-style. The dipole strength in each simulation is labeled.
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Figure 3.11: Efficiency of radial radiation luminosity Lr/(Ṁc2). Lr is radiation
luminosity in the optically thin region τr < 1. Each dipole simulation is shown in
different colors and line-styles.

accreting material in each magnetic field simulation is shown from snapshot data in
Fig. 3.1 and from time-averaged data in Fig. 3.2.

Fig. 3.10 shows that in the innermost radii close to the neutron star, there is
a steep rise with radius in luminosities Lr and Lθ, resulting from the radiation
shock. Lθ increases up to a radius of ∼ 40 rg, because of the added radiation flux
from the accretion disk and column. Beyond 40 rg, where there is an outflow, Lθ

decreases. This reduction can be attributed to the momentum transfer of photons
to the outflowing gas. Photons interact with the outflowing gas when they pass the
outflow region. This process converts the radiation energy into the kinetic energy
of the outflows (see the rise in kinetic energy of outflows in Fig. 3.8).

Fig. 3.10 shows that Lr flattens out in both dipole simulations. Lr represents the
maximum radiation released from each dipole simulation and is expected to reach
the observer depending on their viewing angle (neglecting cosmological effects). The
value of Lr is approximately 2.5LEdd in the simulation with a dipole strength 1010 G
and about 1LEdd in the simulation with a dipole strength 1011 G. The reason for
the low luminosity in the strong dipole simulation is discussed in the description of
Fig. 3.6 in the subsection of ‘Energy flow’, where I discussed the low efficiency of
simulation with the strong dipole.

As shown in Fig. 3.9, radiation in the optically thin cone-like region (τr < 1)
moves out of the accretion disk and column. This radiation may reach the observer
depending on their viewing angle. I have already demonstrated that this luminosity
decreases with increasing dipole strength in Fig. 3.10. However, the accretion rate
in each simulation is different. To illustrate the trend of luminosity variation with
respect to dipole strength, I have plotted Lr/(Ṁc2) for each magnetic field simulation
in Fig. 3.11. There we see that the efficiency of radiation in the optically thin
region (τr < 1) reaches a maximum of about 0.08% in the weak dipole (1010 G)
and decreases with increasing dipole strength to slightly less than 0.04% for the
strong dipole (1011 G), at a radius of about 40 rg. The curves then flatten out at a
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Figure 3.12: Parameter 1/b as a function of the viewing angle. Each dipole sim-
ulation is shown in different colors and line-styles. The faded color indicates the
optically thick region within the disk.

radius depending on the dipole strength of each simulation. Beyond radii of about
200 rg, the radiation increases, most likely due to the curvature of the photosphere
at larger radii, at which more radiation flux sinks to the optically thin region. This
increase in radiation is significant in the strong dipole simulation 1011 G resulting in
the efficiency of radiation rising to ∼ 0.07%.

The most interesting parameter from an observational perspective is the apparent
or isotropic luminosity, Liso. We can compute Liso using the formula Liso(θ) =
4πd2F r

rad, where d is the distance between the observer and the object, and F r
rad is

the radiation flux in the optically thin region (τr < 1). In numerical simulations, Liso

can be calculated at arbitrary distances. In this thesis, I compute this parameter
up to the outer radius of the initial torus, 500 rg. As I mentioned in Section 1.2, the
isotropic luminosity is a factor of 1/b of the true luminosity, L: Liso ∼ L/b. When
b ≪ 1, the observer overestimates the true luminosity and the accreting X-ray source
might appear as an ULX.

In Fig. 3.12, I plot Liso(θ)/Lr ≡ 1/b(θ) versus θ for each magnetic field simulation.
The beaming b reaches its minimum values at angles close to the polar axis (0 and
π). At large viewing angles (approximately π/4 ≤ θ ≤ 3π/4) the faded color
lines indicate the optically thick region within the disk where the radiation flux
cannot reach the observer. The beaming factor increases with dipole strength. The
minimum beaming factor is approximately 1/60 ≃ 0.017 for the dipole strength
1010 G, and is about 1/12 ≃ 0.08 for the dipole 1011 G. These values are comparable
to the beaming factor estimated in KLK model (King & Lasota, 2020), which ranges
from 0.009 to 0.6. However, my model here is not directly comparable with the
analytical model of KLK because of the distance between the magnetospheric and
spherization radius as discussed in Section 1.2.1.

In Fig. 3.13, is shown the apparent (isotropic) luminosity Liso(θ) in the unit
of LEdd for each magnetic field simulation. The left and bottom axes display the
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Figure 3.13: Isotropic luminosity in the unit of LEdd in polar coordinates. With
right axis show viewing angles. The straight gray solid lines correspond to particular
viewing angles. The faded straight line in each magnetic field curve represents the
optically thick region at which the radiation flux diminishes to zero.
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value of Liso and viewing angles are shown with gray solid straight lines. Most
of the radiation flux is concentrated at angles less than ∼ 15◦, with the isotropic
luminosity peaking at the polar axis. A weak dipole magnetic field causes the high
isotropic luminosity due to collimation by the strong outflow, which creates a narrow
cone-like optically thin region near the polar axis (see Fig. 3.9). Along the angle
of the optically thick region within the disk, where radiation flux cannot reach the
observer, Liso drops to zero. This angle varies with the dipole strength, e.g. for
the weak dipole simulation (1010 G), it is about 15◦, while for the strong dipole
simulation (1011 G), it is about 35◦. Following the faded color solid lines, one can
find the angle for each magnetic field simulation.

The main takeaway of this section is that weakly magnetized neutron stars with
dipole strengths in the order of 1010 G accreting above the Eddington limit can pro-
duce isotropic luminosities consistent with those observed in ULXs. Notably, the
simulation with the weakest dipole (1010 G) results in the highest apparent lumi-
nosity while the accretion rate in the presence of this magnetic field is lower than
the one in the stronger magnetic field simulations. This result has been prepared as
"Astrophysical Journal Letter" and the paper is attached to this thesis in Chapter 4.

It is challenging to perform simulations with 109 G magnetic field and to deter-
mine whether they would lead to a beamed emission consistent with ULXs. Some
improvements in the code are required for such confirmation. Abarca, Kluźniak,
& Sądowski (2018) showed that in non-magnetized neutron stars the radiation is
not beamed even when accreting at super-Eddington rates. With stronger magnetic
fields (> 1011 G), the beaming factor decreases.

3.3 Study of the impact of accretion rate
In this section, I discuss the impact of super-Eddington accretion rate on the lu-
minosity and beamed emission of accreting neutron stars. I vary the accretion rate
for two dipole strengths of neutron stars presented in the previous section (1010 G
and 3× 1010 G). These strengths were chosen based on the results of Section 3.2.3,
where the apparent luminosities with such magnetic fields exceed 90LEdd and the
minimum beaming factor was ∼ 0.02. I compare simulations with accretion rates of
∼ [100, 300, 1000]LEddc

−2.
In this section, most of the results are computed using the time-averaged data

from 15 000−40 000 tg. I will specify instances where snapshots at specific times are
used. In the line plots the magnetic field is denoted by line-style and accretion rates
are labeled as Ṁ100, Ṁ300, and Ṁ1000 using different colors.

In Fig. 3.14 are plotted the radiation energy density in the left-half panels and the
rest-mass density in the right-half panels using the snapshot data at time 30 000 tg.
Each column shows the results with one magnetic field, 3 × 1010 G and 1 × 1010 G
on the left and right panels, respectively. Each row represents one accretion rate
increasing from top to bottom as labeled. It is shown that the plasma propagates to
higher latitudes with increasing accretion rates. The stream of gas in the accretion
disk and column increases in density with respect to the accretion rate from the top
to the bottom. From left to right panels in each row, it is obvious that in the stronger
magnetic field simulation (left column) more dipole lines remain unchanged after
the interaction of field lines and reconnection. Additionally, in the weaker magnetic
field, gas propagates to "slightly" higher latitudes compared to the stronger magnetic
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field. As a result, the high accretion rate Ṁ1000 in the presence of the weak dipole
(1010 G) causes the radiation energy to be strongly collimated in comparison to the
other simulations.

In Fig. 3.15 are shown the time-averaged data in the range of 15 000− 40 000 tg.
Consistent with the findings from Fig. 3.14, the radiation becomes more collimated
as the accretion rate increases and the dipole strength decreases. Fig. 3.15 also illus-
trates the impact of both accretion rate and dipole strength on the radius at which
the disk is truncated. In each dipole simulation, the truncation radius decreases
with increasing accretion rate.

3.3.1 Accretion disk and column

I compute the magnetospheric radius Rm using Eq. 3.2. Fig. 3.16 shows the Rm

versus the accretion rate in each magnetic field simulation presented in this section.
The red circles show the results of the simulation with dipole strength 3 × 1010 G,
and the blue circles indicate the results of the simulations with dipole strength
1 × 1010 G. The gray dashed lines are the fitted functions to the results of each
magnetic field simulation. With the stronger magnetic field Rm ∝ Ṁ−0.17 and in
the weaker magnetic field Rm ∝ Ṁ−0.02. The black solid line shows REL

m ∝ Ṁ−2/7

that corresponds to the analytical solution (see Eq. 1.1 in Section 1.1.1). Rm in
each magnetic field simulation decreases with respect to the accretion rate. In
the stronger magnetic field simulation, Rm changes less steeply than the analytical
solution. One reason that may explain this difference between the analytical solution
and numerical simulation is the additional source of pressure from radiation. This
pressure is more significant with higher accretion rates. In the weak magnetic field
simulation (1010 G), at these high accretion rates, the magnetosphere is very close to
the surface of the neutron star and can not be smaller with increasing the accretion
rate, i.e. Rm remains nearly constant as a function of accretion rate.

The accretion, inflow, and outflow rates are computed using Eqs. 3.3 to 3.5 and
are presented in the top, middle, and bottom panels in Fig. 3.17. The plot indicates
that the accretion rate is slightly higher in stronger magnetic field simulation, as
discussed in Section 3.2.1. The figure shows that simulations reach the steady-
state at the radius 100 rg, except for the simulations with a high accretion rate
(1000LEddc

−2), where the steady-state radius is approximately 60 rg (as shown in the
top panel). The outflow rate strongly increases with the accretion rate. Additionally,
the figure illustrates that the location of outflows moves farther from the neutron
star as the accretion rate decreases.

3.3.2 Power of the outflow

In Fig. 3.18 is displayed the momentum density ρur multiplied by 2πr sin(θ) in
units of [LEddc

−2r−1
g ]. The top row corresponds to the simulations with a stronger

magnetic field (3×1010 G) and the bottom row corresponds to the simulations with a
weaker magnetic field (1×1010 G). The streamlines show the direction of flow. In the
colormaps the negative values denote ingoing flow and the positive values indicate
the opposite direction. The red dashed line in each panel is the zero Bernoulli
surface. Each column presents the results of a different accretion model labeled.
From left to right, increasing the accretion rate results in enhanced outflows. High
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Figure 3.14: Snapshot in simulations at time 30 000 tg. The left-half of each panel
shows the radiation energy density Ê and the right-half the rest-mass density ρ.
Magnetic field lines are plotted as contours of the vector potential, Aϕ. The left
column shows the simulation with 3× 1010 G and the right column with 1× 1010 G.
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Figure 3.15: The time-averaged data. The left-half of each panel shows the radiation
energy density Ê and the right-half the rest-mass density ρ. Magnetic field lines are
plotted as contours of the vector potential, Aϕ. The left column shows the simulation
with 3× 1010 G and the right column with 1× 1010 G.
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Figure 3.16: The magnetospheric radius of each simulation with different magnetic
field and accretion rate. Each color represents one magnetic field simulation. The
dashed gray lines are fitted functions and the solid black line corresponds to the
Elsner-Lamb analytical solution, Eq. 1.1.

accretion rate Ṁ1000 simulations exhibit strong outflows. Additionally, a weaker
magnetic field correlates with stronger outflows.

In Fig. 3.19, the radiation flux is presented in the left-half panel, and the kinetic
flux is displayed in the right-half panel for three different accretion rates in a simula-
tion with 1010 G. The radiation fluxes are multiplied with 2π sin(θ) and shown in the
units of [LEddr

−1
g ]. The solid green contour represents the photosphere, calculated

using Eq. 3.18 (τr = 1). The red-dashed lines indicate the zero Bernoulli surface,
while the gray-dashed lines denote the viewing angles that are labeled. This figure
illustrates the increasing power of the outflow with respect to the accretion rate, as
shown in the right-half panels. The outflows propagate towards angles close to the
polar axis. The angle is approximately 12◦ in the model with the highest accretion
rate (Ṁ1000). The surface of the photosphere cone (τr = 1) is positioned at the
same angle relative to the axis. The photosphere broadens as the accretion rate
decreases. Additionally, it is evident that the higher accretion rate model shows a
greater radiation flux compared to the lower accretion rate model.

Fig. 3.20 shows the efficiency of the kinetic luminosity in each simulation com-
puted by Eq. 3.17. As expected, the kinetic efficiency decreases with increasing
magnetic field and with decreasing the accretion rate. The efficiency of kinetic lu-
minosity reaches 0.7% in the highest accretion rate (Ṁ1000) in the presence of a weak
dipole (1010 G). In the lowest accretion rate (Ṁ100) it is below 0.2% in both magnetic
field simulations.

3.3.3 Radiative luminosity and beaming emission

Before computing the luminosity, the optical depth in r and θ directions are com-
puted using Eqs. 3.18 and 3.19, respectively. In Section 3.2.3 is explored the impact
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Figure 3.17: Net accretion rate (top panel), inflows rate (middle panel) and outflows
rate (bottom panel).
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Figure 3.18: The momentum density times 2πr sin(θ) in the units of [LEddc
−2r−1

g ].
The negative values are inflow and the positive values are outflow. The red dashed
line is the zero Bernoulli surface. The first row represents the results of 3 × 1010 G
and the second row 1 × 1010 G. Each column represents the momentum density of
one accretion rate simulation as labeled.
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Figure 3.19: The radiation flux (left) and kinetic flux (right) for three different
accretion rates which are labeled for the simulations of the dipole strength 1010 G.
The gray dashed lines show the viewing angles and the red-dashed line and green
solid lines are zero Bernoulli surface and photosphere (τr = 1), respectively.
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Figure 3.20: The efficiency of outgoing kinetic luminosity computed in the outflow
region (Be > 0, ur > 0).

of magnetic fields on optical depth due to outflows. Here I discuss the impact of the
accretion rate on the optical depths.

The computed optical depths for each accretion rate in the simulation of 1010 G
are depicted in Fig. 3.21. Increasing the accretion rate results in an increase in τr
within the disk. The optically thick regions with τr > 1 extend to higher latitudes
in simulations with higher accretion rates. The dark green color in each panel of the
first row indicates an optical depth τr = 1, which is shifted by increasing the accretion
rate towards the polar axis from the left panel to the right panel. Consequently, the
optically thin cone-like region (shown in orange color) becomes more narrow with
increasing accretion rate, as also shown in Fig. 3.19. The polar optical depth is
shown in the second row of Fig. 3.21. The dark green color demonstrates that the
position of the photosphere (τθ = 1) changes with the accretion rate. The figure
demonstrates the optically thin region above the accretion funnel (shown with the
blue color) widens with a decrease in the accretion rate as a result of the decrease
in outflows.

In Fig. 3.21 we trace the streamlines to determine the direction of radiation flux.
It is observed that in simulations with high accretion rates, where the optical depth
within the disk is high, the radiation flux primarily advects with the flow towards
the neutron star. Conversely, in simulations with low accretion rates, at each radius,
the radiation flux moves out to the optically thin region.

The radiation fluxes within the optically thin region τr < 1 may be detectable by
the observer. To analyze the simulations, the radiation luminosity in the optically
thin region is computed using Eq. 3.23. The efficiency of radiation is Lr/(Ṁc2) with
Ṁ computed at radius 50 rg. In Fig. 3.22 is illustrated the radiation efficiency of each
magnetic field and accretion rate simulation. As it is also discussed in Section 3.2.3,
weaker dipole fields (1010 G) result in higher radiation efficiency. It is observed that
a high accretion rate corresponds to low efficiency. In the high accretion rate there
is a significant outflow, when photons pass through the tick outflow, they interact
with outflowing material and transfer their momentum. This interaction lowers the
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Figure 3.21: The colormaps show optical depth τr (top panels) and τθ (bottom panels)
for magnetic field 1010 G. The streamlines show radiation direction. Each column
represents one accretion rate which is labeled.
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Figure 3.22: Efficiency of radiation luminosity Lr/(Ṁc2). Lr is radiation luminosity
in the optically thin region τr < 1.

radiation efficiency and increases the kinetic efficiency (see Fig. 3.20).
In Fig. 3.22, radiation efficiency increases up to radii of approximately 50 rg,

including the radiation flux released from the accretion column and disk. Subse-
quently, it decreases up to radii approximately 200 rg, attributed to the interaction
of photons with the outflows, resulting in reduced radiation energy and increased
kinetic energy of the outflowing gas. With low accretion rate simulations Ṁ100 and
Ṁ300 there is an increase in the radiation efficiency up to a radius of 500 rg. This
increase is more pronounced in simulations Ṁ100. This increase is most likely at-
tributed to the geometry of the photosphere. The curvature in the photosphere
τr = 1 at large radii causes the radiation from the optically thick region to escape
into the optically thin region.

Fig. 3.22 shows that in simulations with high accretion rate Ṁ1000, the optical
depth does not significantly change even at large radii, resulting in a constant ra-
diation efficiency. The radiation efficiency of simulations with high accretion rate
in both magnetic field simulations is similar, indicating that the effect of accretion
rate dominates over the effect of the magnetic field on the radiation efficiency. The
impact of the magnetic field on the efficiency is discussed in Section 3.2.3.

Fig. 3.22 indicates that the radiation efficiency for each accretion rate in simu-
lations of 1010 G is 0.25%, 0.7%, and 2.5% from high to low accretion rates, respec-
tively. This value for the stronger magnetic field 3 × 1010 G is 0.25%, 0.65%, and
1.6% from the high to the low accretion rates, respectively.

Next, I compute the beaming factor and apparent luminosity which are the
important parameters from the observational perspective. These computations are
similar to those in Section 3.2.3. The factor 1/b(θ) can be computed by dividing
Liso(θ) = 4πd2F r

rad by the actual luminosity Lr (the radiation luminosity in optically
thin region, τr < 1). In Fig. 3.23 is shown the beaming factor as 1/b versus θ for
each simulation. It is shown that the beaming factor b varies between 0.05 and
0.008 in the simulation with 1010 G and between 0.05 to 0.01 in the simulation with
3× 1010 G, both from the low to high accretion rate.

70



3.4. SUMMARY AND CONCLUSIONS

Figure 3.23: Parameter 1/b as a function of the viewing angle for each dipole simu-
lation. The faded color indicates the optically thick region within the disk.

I show the apparent luminosity in Fig. 3.24. Similar to Fig. 3.13, the straight
gray lines represent the viewing angles, and the faded-color straight lines are along
the optically thick region where the apparent luminosity dropped to zero. The
faded-color lines show the viewing angle at which no radiation flux could reach the
observer. This viewing angle is shifted towards the polar axis with the increase in
the accretion rate and the decrease in the magnetic field. The apparent luminosity
in the lower magnetic field is between 42 - 220 LEdd in the simulation of 1010 G
and between 40 - 185 LEdd in the simulation of 3 × 1010 G, both from low to high
accretion rate.

I note that although the radiation efficiency decreases with increasing the accre-
tion rate in each magnetic field simulation, the radiation is more strongly beamed
and the apparent luminosity increases with the increase in the accretion rate.

3.4 Summary and conclusions
I simulate ULXs powered by accretion in moderately magnetized accreting neutron
star in HMXBs.

I conducted 10 numerical simulations (Table 3.1) of the accreting magnetized
neutron star with the accretion rate in the range of 100LEddc

−2 to 1000LEddc
−2.

The neutron star dipole strength was in the range of 1010 − 1011 G following the
prediction in KLK model (King & Lasota, 2020, 2019; King, Lasota, & Kluźniak,
2017).

The simulations are initialized with the equilibrium torus containing loops of
the magnetic field which are oriented in opposite directions of the dipole magnetic
field of the neutron star, leading to the magnetic reconnection. Thus in the strong
magnetic field accreting material follows the field lines and falls on the surface of
the neutron star.
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Figure 3.24: Isotropic luminosity in the unit of LEdd in polar coordinate. The
right and top axes show viewing angles. The straight gray solid lines correspond
to particular viewing angles. The faded straight line in each magnetic field curve
represents the optically thick region at which the radiation flux diminishes to zero.
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In the first part of the study, I initialized the torus with the initial density
producing the accretion rate above 200LEddc

−2 for models with different neutron
star dipole strengths. In the second part of the study, I chose the dipole strengths
1010 G and 3 × 1010 G varying the density of the initial torus to simulate different
accretion rates 100, 300, and 1000LEddc

−2.
Obtained results indicate that for the dipole strength from 1010 G to 1011 G the

outflow rate increases from 80LEddc
−2 to 325LEddc

−2, respectively. The outflows
propagate to angles close to the polar axis resulting in the cone-like optically thin
region through which radiation flux escape towards the observer. This cone-like
region widens with increasing dipole strength. Thus the radiation is more collimated
in the weaker dipole in comparison to the stronger dipole. For Ṁ ≃ 200LEddc

−2,
the simulation with the weakest dipole in (1010 G) results in the smallest beaming
factor of 0.02 and the highest apparent luminosity of about 120LEdd, although the
accretion rate in the weakest dipole simulation is lower than in the rest of magnetic
field simulations.

The maximum apparent luminosity of the first part of this study is in the lower
part of the luminosity observed from ULXs. The simulations with different accretion
rates with the fixed dipole strengths indicate that with increasing the accretion rate,
the outflow rate increases. The outflow rate increases from 60 to 4000LEddc

−2 for
the accretion rate 100 to 1000LEddc

−2, respectively. Similar to the simulations with
different dipole strengths, the outflow creates a cone-like optically thin region close
to the polar axis. This cone-like region widens with a decrease in the accretion rate.
The beaming factor of the highest accretion rate simulation (1000LEddc

−2) with
the dipole strength of 1010 G is 0.007 with the corresponding apparent luminosity
220LEdd. The apparent luminosity in the magnetic field of 3 × 1010G and the
accretion rate of 1000LEddc

−2 is about 185 Eddington units while in the accretion
rate of 300LEddc

−2 it is about 100 Eddington units which is the lowest luminosity of
detected ULXs. The accretion rate 100LEddc

−2 results in the apparent luminosity
of about 40LEdd in both magnetic field simulations.

I conclude that the ULXs are likely accreting neutron stars with dipole magnetic
fields of the order of 1010 G which they accrete beyond 300LEddc

−2.
A caveat in my study is that even with long simulations I performed, they reach

about one-quarter of the pulsation period detected in PULXs. Thus my results are
not suitable for the study of PULXs. Additionally, the thick outflows depending on
the viewing angle may obscure the pulsation.

For future work, I will modify the model to study PULXs using 3D simulations
with a tilted magnetic field relative to the rotation axis of the neutron star. This new
study will be initiated with a stable accretion disk to minimize numerical artifacts
and achieve a larger steady-state radius in a shorter simulation time.

I also note that although the M1 closure scheme is a powerful method to process
radiation transfer in the code, for more accurate computation of the luminosity,
post-processing radiation transfer would be beneficial. This can be achieved by e.g.
the HEROIC code (Narayan, Zhu, et al., 2016). The code is capable of computing the
radiation field and spectrum for an observer at infinity, taking into account different
viewing angles.
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Chapter 4

Paper 2: Moderately magnetized
accreting neutron stars as ULXs with
strong outflows

In this chapter, I present the paper intended for submission to the Astrophysical
Journal Letters (ApJL). The primary focus of this letter is the beaming emission
from super-Eddington accretion onto a neutron star with a magnetic field strength
not exceeding 1011 G. The accretion rate exceeds 200 Eddington luminosities. We
compare the outflows and apparent luminosities of accreting neutron stars with three
different dipolar magnetic fields: 1010 G, 5 × 1010 G, and 1011 G. Our simulations
reveal that, despite the lower accretion rate in the case of the weak dipole field
(1010 G), the apparent luminosity is higher than in the simulations with stronger
fields. The apparent luminosity exceeds 100 Eddington units, consistent with the
luminosity of detected ULXs. The full study is presented in Chapter 3.
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ABSTRACT
We perform radiative magnetohydrodynamics simulations in general relativity (GRRMHD) of super-

Eddington accretion disk onto neutron stars endowed with a magnetic dipole corresponding to surface
strengths not exceeding 100 GigaGauss. Accretion is found to power strong outflows which collimate
the emergent radiation of the accretion columns, leading to apparent radiative luminosities of ∼ 100

Eddington, when the true luminosity is a few Eddington units. Surprisingly, the collimation cone/angle
widens with increasing magnetic field. Thus, in our simulations the apparent luminosity of the neutron
star is substantially larger for weaker magnetic fields (1010 G) than for the stronger ones (1011 G).

Keywords: Ultraluminous X-ray sources, Magnetohydrodynamical simulations, Neutron stars

1. INTRODUCTION

Ultraluminous X-ray sources (ULXs) have puzzled as-
trophysicists since the 1990s. These non-nuclear extra-
galactic sources emit X-rays at luminosities exceeding
1041 erg s−1, which is less than the luminosity of Active
Galactic Nuclei (AGNs) but far surpassing the Edding-
ton luminosity (LEdd) for a typical stellar-mass black
hole (of mass ∼ 10M⊙) or a neutron star. Such extraor-
dinary luminosity may be produced in binary systems
where the accretor is either a massive black hole accret-
ing below its Eddington limit or a stellar-mass black
hole or a neutron star that accretes beyond its Edding-
ton limit.

Over the years, different models have been proposed
to explain ULXs. Colbert & Mushotzky (1999) sug-
gested that the high luminosity of ULXs was attributed
to sub-Eddington accretion in intermediate-mass black
holes (IMBHs) with masses in the range of 102 to
104 M⊙. Begelman (2002) suggested photon-bubble
instability in accretion onto stellar mass black holes,

Corresponding author: Fatemeh Kayanikhoo
fatima@camk.edu.pl

but the model cannot explain luminosities higher than
3 × 1040 ergs−1 without beaming (see Lasota 2024, and
references therein).

King et al. (2001) noted that ULXs may represent
a transient stage in high-mass X-ray binaries (HMXB)
characterized by extremely high mass transfer rates with
compact accretor: stellar-mass black hole (∼ 10M⊙),
neutron star or white dwarf. They proposed super-
Eddington accretion onto compact objects in intermedi-
ate and high mass X-ray binaries and emission geometri-
cally beamed by outflows close to the accretor creating a
funnel-like optically thin region. Radiation can reach the
observer through the funnel, which is a fraction b ≪ 1

of the solid angle of the sphere. Such an observer over-
estimates the true luminosity L by a beaming factor b
in relation to the isotropic luminosity: Liso ∼ L/b. The
beaming emission was further studied by (King et al.
2017; King & Lasota 2019, 2020) known as KLK model.

We note that super-Eddington accretion and radia-
tively driven disk outflows were considered for black
holes by Shakura & Sunyaev (1973), who find the disk
luminosity to be proportional to ∼ [1 + ln Ṁ/ṀEdd].
Here, the emitted radiation within a specific radius ex-
ceeds the Eddington limit called spherization radius.
However, in the case of neutron stars the stellar mag-
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netic field may significantly affect the outflows, and the
luminosity of the accretion stream hitting the stellar sur-
face is expected to be on the order of L ∼ GMṀ/R∗,
i.e., L ∼ 0.2Ṁc2 for a stellar radius of R∗ = 5rg, where
rg = GM/c2 is the gravitational radius. In accreting
neutron stars, the magnetic field truncates the accretion
disk, allowing the material to accrete onto the neutron
star along the magnetic field lines. Radiation can es-
cape from the sides of the column, as detailed by Basko
& Sunyaev (1976). If the spherization radius is larger
than the magnetosphere the disk is radiatively outflow-
driven between two radii.

In 2014, Bachetti et al. (2014) discovered that the
source ULX–2 in the galaxy M82 exhibits pulsations in
its lightcurve with an average period of 1.37 s. The co-
herence and the short period of this source indicate that
the central object is a neutron star. This neutron star
must accrete beyond Eddington limit, its apparent lumi-
nosity is ∼ 103LEdd in the pulsed emission alone. This
finding increased the possibility that ULXs are pow-
ered by super-Eddington accreting neutron stars. Sub-
sequently, several other pulsating ULXs were discovered
with spin periods and their derivatives in the range of
less than a second to 12 minutes (e.g., Motch et al.
2014; Israel et al. 2016; Fürst, F. et al. 2018; Chandra
et al. 2020).

In some models magnetars are considered as the ac-
cretor in ULXs (Ekşi et al. 2015; Mushtukov et al. 2017).
Magnetic fields ≳ 1014 G in accreting neutron star sys-
tems reduce electron scattering opacity for X-rays, re-
sulting in an increase in the effective Eddington lumi-
nosity (Herold 1979; Ekşi et al. 2015). Strongly magne-
tized neutron stars (B ≥ 1014 G) are required to produce
the luminosities ≳ 1040 erg s−1 (Mushtukov et al. 2015).
The scenario of accreting magnetars as ULXs was re-
jected by Kluźniak & Lasota (2015). They pointed out
that ULX–2 M87 is not only distinguished from normal
X-ray pulsars by its high luminosity but also the high
spin-up rate of the neutron star that is 2 orders of mag-
nitude higher than normal X-ray pulsars. They showed
that the spin-up rate can not be attributed to a magne-
tar.

Lasota & King (2023) noted that the required mag-
netic field strength to increase the radiation luminosity
up to the observed isotropic luminosity of ULXs is incon-
sistent with the spin-up rates seen in pulsating ULXs.
In conclusion, a moderate magnetic field is required to
explain the observed properties of ULXs powered by ac-
creting neutron stars and concluded that the high lumi-
nosity of ULXs is caused by beaming emission as was
shown in KLK model.

KLK model predicts the magnetic field of neutron star
ULXs to be in the range of 1010−1013 G with most of the
values falling between 1010 − 1011 G (King et al. 2017).

In this letter, we investigate the impact of the moder-
ately strong dipolar magnetic field in the range of 1010 G
to 1011 G on the luminosity and beaming emission. In
Section 2, we outline the numerical method and the used
simulation setup. Simulation outcomes and discussion
are given in Section 3. We summarize our findings in
the concluding Section 4.

2. NUMERICAL METHODS AND SIMULATIONS
SETUP

We use the Koral code (Sądowski et al. 2015, 2013),
to solve the equations of General Relativistic Radiative
Magnetohydrodynamics (GRRMHD) on a static mesh
with a fixed metric. Our setup is the same as described
in Abarca et al. (2021), briefly summarized as follows.
Conservation equations for matter and radiation energy-
momentum are solved separately using standard explicit
methods for gas and the M1 closure scheme for radia-
tion. Matter and radiation energy-momentum tensors
are coupled with the radiation four-force (Mihalas &
Mihalas 1984) through a local implicit method. The
magnetic field is evolved by using the flux-interpolated
constrained transport method (Tóth 2000), ensuring the
divergence of the magnetic field remains at zero. The
strong magnetizations within the neutron-star magne-
tosphere are addressed through a pioneering flooring
scheme outlined by Parfrey & Tchekhovskoy (2017),
later expanded for radiation considerations by Abarca
et al. (2021).

We use a 2.5D grid based on the Schwarzschild metric
with the signature (−,+,+,+). The resolution of the
simulations is 512 × 510 × 1 cells in r, θ and ϕ direc-
tions, respectively. The grid spacing is logarithmically
increasing in a radial direction, spanning from rin = 5 rg
to rout = 1000 rg, where rg is the gravitational radius
rg = GM/c2. It is a well-established fact that in the
axisymmetric cases, the magnetic field inside the accre-
tion disk decays over time (the anti-dynamo theorem
described in Cowling 1933). To address this, we uti-
lize a mean-field dynamo (Sądowski et al. 2015) which
effectively restores the magnetic field, mimicking the be-
havior expected in a full 3D simulation. This approach
enables us to conduct long-duration simulations. We run
the simulations to 50 000 tg, where tg = GM/c3 is the
gravitational time. We use the units where G = c = 1

in the equations.
We conducted simulations employing different

strengths of the stellar dipole magnetic field, 1 × 1010,
5 × 1010, and 1 × 1011 G. The neutron star mass is 1.4
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Figure 1. The initial rest mass density ρ in the fluid frame,
shown with the logarithmic color grading in the simulation.
Solid lines indicate the isocontour lines of the vector potential
Aϕ, which in our setup are parallel to the magnetic field lines.
The surface magnetic field strength of dipole is 1011 G.

M⊙ and the radius is 5 rg. We neglect the stellar ro-
tation because the simulations run for 50 000 tg, which
is about 0.35 s of physical time, much smaller than the
period of observed pulsating ULXs, which is of the or-
der of seconds. All the simulations are initialized with
the same equilibrium torus, which produces the mass
accretion rate beyond 200LEddc

−2.
The initial setup for the simulation with the dipolar

magnetic field of 1011 G is shown in Fig. 1. The simu-
lation is initialized with a background atmosphere with
density and internal energy several orders lower than in
the initial torus. The inner radius of the torus is 34 rg
and it extends to radius 500 rg. We also note that in our
model the disk is (nearly) Keplerian.

3. RESULTS AND DISCUSSION

We present the results in our simulations with the
time-averaged data over the periods from t = 15 000 tg
to 50 000 tg.

In Fig. 2 are shown the results for the radiation en-
ergy density and the rest-mass density, with the neu-
tron star dipole magnetic fields differing by one order of
magnitude. The disk is truncated at the magnetospheric
(Alfvén ) radius where the magnetic pressure dominates
the ram pressure. The magnetospheric radius increases
with the strength of the magnetic field. In the case of the
weak magnetic field (1010 G), it is at 5.3 rg, very close to
the surface of the neutron star while in the simulation of
the strong magnetic field (1011 G), it is at about 18 rg.

During the simulation, the stellar dipole and the
torus field lines, which are oriented in opposite direc-

tions, converge and undergo reconnection (Parfrey &
Tchekhovskoy 2017; Abarca et al. 2021). As evident
in the mid-plane of the disk of the left frame in Fig. 2,
in the presence of the strong magnetic field (1011 G),
the dipolar field lines close to the neutron star remain
unchanged and the stream of dense matter follows the
disk mid-plane field lines and the accretion column and
falls on the surface of the neutron star. The right frame
of Fig. 2 shows that in the simulation with the weaker
dipole (1010 G), almost all dipolar field lines break and
gas propagates to higher latitude. Thus, the radiation
energy becomes more tightly collimated towards the po-
lar axis. We discuss this fact in more details later in this
section.

In the left-half panels of Fig. 2 is shown where the ac-
creting material reaches the surface of the neutron star
in the simulation with the weak magnetic field (right
frame), radiation freely propagates toward the observer.
In the simulation with the strong magnetic field (left
frame), there is a thin layer of low-density material
above the neutron star surface, between the accretion
column and the neutron star axis. It is caused by the
trapping of the background atmosphere in the strong
magnetic field and this layer may slightly affect the ra-
diation luminosity.

As the gas moves towards the neutron star, it releases
energy in the form of thermal, kinetic, and radiation
energies. In the accretion process, gravitational poten-
tial energy is converted into kinetic energy. Collisions
within the disk convert kinetic energy into thermal en-
ergy, which heats the disk and causes radiation emission.
It is crucial to accurately compute the kinetic energy
that accelerates the outflow and powers the radiation
luminosity. The radiation flux is

F r
rad = −Rr

t, (1)

where Rµ
ν is the radiation energy-momentum tensor,

and the kinetic flux is

F r
ke = −ρur(ut +

√−gtt), (2)

where ut is the time component of 4-velocity, and gtt =
−(1−2rg/r) in the Schwarzschild metric (for details see
Sądowski et al. 2016). The lower time index causes a
negative sign in the equations.

In Fig. 3 are shown the radiation flux (left-halt pan-
els) and kinetic flux (right-half panels) for two magnetic
fields 1011 G (at the top) and 1010 G (at the bottom).
The fluxes are multiplied by 2πr sin(θ) and shown in
the units of [LEddr

−1
g ]. In each frame, the radius is

extended to 500rg, where the outer edge of the torus
is located. Three contours in Fig. 3 separate differ-
ent regions. The red dashed contour shows the zero
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Figure 2. Our results in the cases with stellar dipoles of 1011 and 1010 G. The left half of the panels shows the radiation energy
density Ê and the right half the rest-mass density ρ. Magnetic field lines are plotted as isocontours of the vector potential, Aϕ.
Note that the rarefied cones above and below the star are much wider for the 1011 G case.

Bernoulli surface where the relativistic Bernoulli param-
eter is computed:

Be = − T t
t +Rt

t + ρut

ρut
, (3)

with T t
t and Rt

t being the MHD and radiation energy
densities, respectively. The zero Bernoulli surface splits
the simulation domain into two parts. Above this sur-
face, the gas with Be > 0 is energetic enough to reach
infinity on its own. Below the surface, with Be < 0,
the gas is energetically bounded within the disk. The
white dashed and solid green lines represent surfaces of
the photosphere computed in θ and r directions, respec-
tively. The scattering optical depth along these contours
are τθ = 1 and τr = 1, which are measured as follows,

τθ(θ) =

∫ θ

0

ρκes
√
gθθdθ, (4)

τr(r) =

∫ rout

r

ρκes
√
grrdr, (5)

where κes = 0.34 cm2 g−1 is the electron scattering opac-
ity for solar composition, rout the outer boundary of the
simulation.

The top-right panel in Fig. 3 shows that in the strong
magnetic field simulation (1011 G) the outgoing kinetic
flux above the zero Bernoulli surface is negligible. In
the weak magnetic field simulation (1010 G), shown in
the bottom-right panel, above zero Bernoulli surface
there is a significant amount of outgoing kinetic flux.

The outflows impact the photosphere structure in such
a way that the photosphere surfaces τθ = 1 and τr = 1
(shown with the white dashed and solid green lines, re-
spectively) are close to the polar axis of the neutron star
in weak magnetic field simulation. The photosphere sur-
face τr = 1 is located at the angle of 35◦ in the simulation
with magnetic field 1011 G while it is along the viewing
angle of about 15◦ in the simulation with magnetic field
1010 G.

The radiation flux is shown in the left panels of Fig. 3.
The radiation flux is more beamed in the weak mag-
netic field simulation compared to the strong magnetic
field simulation, attributable to the optically thin region
(τr < 1) being narrower.

The top-left panel of Fig. 3 shows that in the simu-
lation with the strong magnetic field, there is a larger
amount of ingoing radiation flux along the equatorial
plane, at the radii less than 100 rg, compared to the
simulation with the weak magnetic field. In the strong
magnetic field, there is outgoing radiation flux within
the zero Bernoulli surface at r ≳ 300 rg. However, the
simulation at the radii above 50 rg contains numerical
artifacts because the disk has not converged within the
simulation time.

The accretion rate and outflow for three simulated
magnetic field models are shown in Fig. 4. The accretion
rate Ṁ(r) is measured by integrating the momentum
density ρur over a spherical surface of a given radius:

Ṁ(r) = −2π

∫ π

0

ρurr2 sin θ dθ, (6)
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Figure 3. The radiation and kinetic fluxes in our simulations with the neutron star dipole 1011 G (top panel) and 1010 G (bottom
panel) are shown in the left and right halves of each panel, respectively. The negative values indicate the direction towards the
neutron star (inflow), while the positive values indicate outflow. The red dashed contour represents the zero Bernoulli surface.
With the white dashed and solid green contours are delineated photospheres τθ = 1 and τr = 1, respectively. The dashed grey
lines show the viewing angles as labeled. The grey streamlines in the left half panels follow the radiation flux and indicate its
direction.

and the outflow rate Ṁout is computed from the mo-
mentum density of the gas outflowing away from the
accretor (ur > 0):

Ṁout(r) = 2π

∫ π

0

ρurr2 sin θ dθ|ur>0. (7)

The radius at which the accretion rate is constant is
called the steady-state radius. In our simulations, the
accretion rate reaches the steady-state at ∼ 30 rg in
the simulations with the magnetic fields 1010 G and5 ×
1010 G and at 20 rg in the simulation with the magnetic
field 1011 G. Our simulations show that the accretion

rate decreases with decreasing magnetic field. As the
dipole weakens, accreting material slows down as it ap-
proaches the neutron star. Subsequently, the material
changes direction, resulting in significant outflows. This
is shown in the middle panel of Fig. 4, where the outflow
rate Ṁout increases with decreasing the strength of the
dipole.

Next, we compute the radiation luminosity in the op-
tically thin region. Since radiation escapes from the ac-
cretion column along the θ direction, we compute the
luminosity by integrating the radiation flux F r

rad over
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Figure 4. The accretion rate Ṁ (top panel) and outflow
rate Ṁout (middle panel) are shown in the unit of LEdd/c

2.
Bottom panel: radiation luminosity in the optically thin re-
gion τθ < 1 in the unit of LEdd. From bottom to top, the
magnetic field in each simulation is shown with a different
color and line-style.

the spherical shell above the photosphere with τθ = 1:

Lrad = 2π

∫

τθ<1

F r
radr

2 sin(θ) dθ. (8)

The radiation luminosity within τθ < 1 is displayed in
the bottom panel of Fig. 4. Due to the radiation shock,
there is a steep rise with radius in radiation luminos-

ity at the radii close to the star. Radiation luminos-
ity increases up to radius 40 rg as the radiation from
the accretion column and disk are included. At dis-
tances greater than 40 rg, radiation decreases with in-
creasing radius. This decrease in radiation luminosity is
attributed to the momentum transfer of photons to the
outflowing gas when they pass the outflow region. In
the simulation with the weakest magnetic field (1010 G)
which shows larger outflows, the drop in luminosity is
more noticeable compared to the stronger magnetic field
simulations.

We calculate the luminosity that reaches the observer
by computing the luminosity in the optically thin region
within the optical depth τr < 1 (the same as shown in
Eq. 8). Since the accretion rate in each of the simula-
tions is different, to enable comparison, we compute the
radiation efficiency defined as the ratio of the radiation
luminosity to the accretion rate Ṁc2. The accretion rate
is calculated at a radius of 20 rg. As mentioned earlier,
at this radius, we find that the disk is in a steady-state
in all simulated models presented in this letter.

The left panel of Fig. 5 shows the efficiency of ra-
diation Lrad/(Ṁc2) represented by thick colored lines,
with different colors and line-styles corresponding to
each magnetic field simulation. As the magnetic field in-
creases, the efficiency of radiation luminosity decreases.
A peak in the curve close to the star is caused by the
radiation shock which is more significant in the stronger
magnetic field simulations. We note that although we
have implemented an energy-reflecting boundary condi-
tion with an albedo of 0.75 (Abarca et al. 2021; Abarca
2022), the photon-trapping phenomenon (Sądowski &
Narayan 2016; Ohsuga et al. 2002) is so strong that the
advected radiation flux dominates energy transport close
to the surface of the neutron star. Consequently, the ra-
diation efficiency is not as expected. The fluctuation in
the curves at the small radii is most likely caused by
the geometry of the photosphere close to the neutron
star. The radiation efficiency is flattened at different
radii depending on the strength of the dipole. At the
radii where the curves are flat, the radiation efficiency of
the simulation with the weakest magnetic field (1010 G)
is about 0.007, while in the simulation with the strongest
magnetic field (1011 G), is about 0.003. In the simula-
tion with the weakest magnetic field (1010 G), there is
a slight increase in the luminosity at ≳ 400 rg, while in
the strong magnetic field simulations (≥ 5× 1010 G) the
luminosity significantly increases at the radii ≳ 200 rg.
This increase is most likely due to the curvature of the
photosphere at large radii enabling the radiation flux
escape to the optically thin region (see Fig. 3). The
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curvature of the photosphere can be attributed to the
fewer outflows at larger radii.

The power in the outflow is computed by integrating
the outgoing kinetic flux (given in Eq. 2) over a spherical
surface at each radius,

Lke = 2π

∫ θ=60◦

0

F r
ker

2 sin(θ) dθ

∣∣∣∣
ur>0

, (9)

where the angle θ = 60◦ is chosen to exclude the energy
evolution within the torus.

The efficiency of the kinetic luminosity Lke/(Ṁc2) of
the outflowing gas in each magnetic field simulation is
represented by the three thin lines in the left panel of
Fig. 5. The kinetic efficiency is of the same order of
magnitude as the radiation efficiency in the simulation
of the weakest magnetic field (1010 G) and about half of
the radiation efficiency in the strongest magnetic field
simulations (1011 G). At the radii less than 40 rg, where
there are no outflows (as shown in the middle panel of
Fig. 4) the kinetic luminosity diminishes to zero. At
distances beyond 40 rg with a significant amount of the
outflow the kinetic luminosity increases steeply. In the
simulations with dipole strengths ≥ 5 × 1010 G the ki-
netic efficiency is almost constant (≤ 0.002) beyond the
radius of about 100 rg. In the simulation with the weak
magnetic field (1010 G) there is a steep rise in the kinetic
efficiency to the radius of 150 rg, continuing to 250 rg.
The maximum kinetic efficiency with this magnetic field
simulation is about 0.007.

From the observational perspective, isotropic (appar-
ent) luminosity Liso is an important parameter. But if
the source is not isotropic, the observer overestimates
Liso by a factor of 1/b where the beaming factor b ≪ 1.

It was shown through numerical simulations in Abarca
et al. (2018) that non-magnetized neutron stars cannot
have an apparent luminosity that exceeds the Edding-
ton limit, even with a super-Eddington accretion rate.
Subsequently, Abarca et al. (2021) showed that in the
simulation of a super-Eddington accreting neutron star
with a dipolar magnetic field 2 × 1010 G, the apparent
luminosity is beyond 100LEdd.

We compute the apparent luminosity Liso = 4πd2F r
rad

where d is the distance between an observer and the
object, in our simulations we compute the apparent lu-
minosity at d = 500 rg. To include all the radiation
luminosity that may reach the observer depending of
their viewing angle (neglecting cosmological effects) we
compute F r

rad in the optically thin region τr < 1.
In the right panel of Fig. 5, is shown the apparent

luminosity Liso in the units of LEdd at various viewing
angles. The viewing angles are indicated with straight
grey solid lines. At large angles, where the optically

thick disk is located, no radiation flux can be detected
by the observer, so the apparent luminosity is zero. In
our simulations, this angle changes with respect to the
strength of the dipole which is shown by the faded-color
lines for each magnetic field simulation. For instance, if
we look at the object with a magnetic field 1010 G from
a viewing angle of about 15◦, the apparent luminosity is
zero.

The observed luminosity of an object varies depend-
ing on the viewing angle, as shown in the right panel of
Fig. 5. When the viewing angle is less than 15◦. The
apparent luminosity reaches the maximum value along
the polar axis. It is evidence that the apparent luminos-
ity decreases with increasing dipole strength, although
the accretion rate changes conversely. The apparent lu-
minosity reaches about 120LEdd for the simulation with
dipole strength 1010 G, and is only about 40LEdd in the
simulation with dipole strength 1011 G. Our simulations
show that ULXs are likely powered by accreting neutron
stars with a dipole of 1010 G. However, this luminosity
is the lower luminosity of detected ULXs.

4. SUMMARY AND CONCLUSIONS

In this letter, we study beamed X-ray emission from
neutron stars in the context of ULXs. We per-
form general relativistic radiative magnetohydrodynam-
ics simulations of supercritical accretion onto neutron
stars with dipolar magnetic fields in the range of 1010

to 1011 G (maximum surface values, corresponding to
dipole strengths 1028 to 1029 G · cm3 for our canonical
neutron star radius of 10 km). The mass accretion rate
onto the star is set to be above 200LEdd/c

2; the rate
of mass flow through the accretion disk is even higher,
reflecting strong outflows from the disk.

Our simulations show that the magnetic field 1010 G
leads to significant outflows about 300LEddc

−2, locating
the photosphere close to the polar axis of the neutron
star, roughly on the surface of a cone of opening angle
≈ 15◦. Thus, the radiation escaping toward the ob-
server through the optically thin cone is highly beamed
and reaches an apparent luminosity of about 120 Ed-
dington units along the polar axis although the true lu-
minosity is about 10 Eddington units. For a magnetic
field increased by an order of magnitude (B = 1011 G)
the outflow is about 100LEdd/c

2, and the optically thin
region is widened to an angle of about 35◦. Here, the
luminosity is less collimated compared to the lower mag-
netic field. The maximum value of apparent luminosity
is about 40 Eddington luminosity along the polar axis.

The beaming factor b is about 0.02 in the weak mag-
netic field simulation and about 0.08 in the strong
magnetic field simulation. The beaming factor in our
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Figure 5. Left panel: The radiative efficiency in the optically thin region τr < 1 (thick lines) and kinematic efficiency (thin
lines) both relative to the mass accretion rate onto the neutron star, L/(Ṁc2), as a function of the radius. The kinetic luminosity
is computed from outgoing kinetic flux above the torus θ ≤ 60◦ shown in Fig. 3. Right panel: The isotropic luminosity as a
function of the viewing angle, Liso(θ) = 4πd2F r

rad(θ), computed at d = 500rg in the optically thin cone, τr < 1. The radiation
luminosity is taken to drop to zero at τr = 1 shown with faded colors, i.e. at viewing angles corresponding to the opening angle
of the optically thin cone. In this polar diagram of the beaming pattern, the straight grey solid lines correspond to particular
viewing angles. From bottom to top in both panels, the magnetic field in each simulation is shown with a different color and
line-style.

model is comparable to the one estimated in the KLK
model. However, our simulations cannot be directly
be compared with the KLK model, as the spherization
and magnetosphere radii are close in the KLK model,
whereas, in our model, the spherization radius is signif-
icantly larger.

We conclude that ultraluminous X-ray sources are
likely powered by neutron stars with a dipolar magnetic
field in order of 1010 G which accreting above 200 Ed-
dington luminosities.

In future work, we will conduct numerical simulations
across a wide range of magnetic fields and accretion rates
to determine the limit for interpreting ultraluminous X-
ray sources powered by accreting neutron stars.

We also note that for more accurate computation of
the luminosity, post-processing radiation transfer is re-
quired. This can be achieved using the HEROIC code
(Narayan et al. 2016). The code is capable of computing
the radiation field and spectrum for an observer at in-
finity, taking into account different viewing angles. This
processing will be done in future research.
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Chapter 5

Conclusions and remarks

The objective of my thesis is to conduct numerical simulations with radiation trans-
fer, to study the ultraluminous X-ray sources (ULXs), focusing on accretion-powered
pulsars with moderate dipolar magnetic fields as the source of ultraluminous X-rays.

Due to the importance of precision in numerical simulations in evaluating as-
trophysical systems under extreme physical conditions, my PhD project has been
divided into two main parts: Part I involves evaluating the numerical simulation
codes with respect to energy conversion in magnetohydrodynamics (MHD) simula-
tions. Part II focuses on simulating super-Eddington accretion onto moderately
magnetized neutron stars and investigating the impact of two main parameters, the
mass accretion rate and strength of magnetic dipole on the apparent luminosity of
this system.

Part I. I performed the well-established Orszag-Tang test problem for MHD
simulation codes in two high-performance codes in astrophysics, Newtonian code
Pluto and general relativistic radiative magnetohydrodynamics code (GRRMHD)
Koral. I conducted simulations of relativistic, resistive, and ideal MHD models in
both 2D and 3D and compared the precision of two codes in capturing substructures.

• The numerical dissipation was estimated using resistive and ideal MHD sim-
ulations in Pluto. The numerical dissipation at the resolution of 512 × 512
was estimated to be 10−4 which is the lower limit of resistivity for plasmoid
unstable magnetic reconnection.

• In the ideal non-relativistic MHD simulations, kinetic and magnetic energies
dissipate to internal energy, heating the plasma during the simulation.

• In relativistic MHD simulations, energy is mainly converted between magnetic
and kinetic forms during the simulation.

• The reconnection rate is consistent with Petschek’s fast reconnection in resis-
tive MHD.

• Reconnection depends on resolution in low resolutions and remains constant
in high resolutions.

• The code comparison indicated that Koral is more precise in capturing sub-
structures in comparison to Pluto.
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• The simulations conducted using Koral included fewer unphysical artifacts in
low resolusions compared to Pluto.

Part II. I investigated accreting neutron stars with the apparent luminosities
consistent with ULXs. In six numerical simulations, I investigated how the dipole
strength of the neutron star impacts the structure of the accretion disk/column
and apparent luminosity. The effect of the super-Eddington accretion rate was
investigated with three accretion rates for two dipole magnetic field strengths. The
results are as follows:

• With increasing dipole magnetic field strength, the magnetospheric radius is
located further from the star, approximating well the analytical solution.

• The efficiency of the accretion disk in the stronger dipole simulation (1011 G)
is smaller than in the weak dipole simulation (1010 G).

• Although the accretion rate decreases with an increase in the dipole strength,
the apparent luminosity of the weaker dipole is higher.

• The apparent luminosity in the simulations with dipole weaker than 3×1010 G
is ⪆ 100 Eddington units which is the lower limit of the luminosity of ULXs.

• With decreasing accretion rate in each dipole strength simulation, the magne-
tospheric radius is located further from the star. The magnetospheric radius
in a weak dipole field of 1010 G as a function of the accretion rate is very close
to the neutron star surface.

• The efficiency of radiation luminosity decreases with increasing the accretion
rate.

• The apparent luminosity increases with increasing the accretion rate.

• In both dipole simulations (1010 and 3×1010 G) with the accretion rate of 100
Eddington luminosities, the apparent luminosity remains about 40 Eddington
units which is not compatible with ULXs.

• The accretion rate beyond 300 Eddington luminosities in both dipole simu-
lations (1010 and 3 × 1010 G) results in the apparent luminosity beyond 100
Eddington units which is compatible with ULXs.

• The highest apparent luminosity corresponds to the dipole strength of 1010 G
and accretion rate of 1000 Eddington luminosities that is about 220 Eddington
limits.

Caveats. The accretion systems involving compact objects are characterized by
strong gravitational forces, high temperatures, radiation, intense magnetic fields,
and rapid velocities. These conditions pose significant challenges for numerical sim-
ulations, especially when considering a neutron star as the accretor, with its hard
surface and intrinsic magnetic field.

The most challenging part was the inner radial boundary. I used the energy-
reflecting boundary condition on the surface of the neutron star, as implemented in
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Koral by Abarca, Parfrey, & Kluźniak (2021). Although the albedo in my simula-
tions is formally 0.75, the high accretion rate, along with a strong magnetic field,
results in a much lower value of reflection on the surface of the neutron star which
is less than 5%.

I ran simulations for a long time and time-averaged data were computed over a
long duration. However, the disk converges and reaches a steady state at a small
radius in simulations with strong magnetic fields. I intend to extend the simulation
time to reduce numerical artifacts at larger radii. Additionally, the simulations were
initialized with an equilibrium torus, which requires a longer simulation time for
the disk to converge. I will initialize the simulations with an initial stable disk to
address this issue.

Future plan. For the numerical simulations study of pulsating ULXs, I wrote
a proposal during the last year of my PhD and I obtained a grant from the National
Science Center of Poland. I will conduct 3D simulations of the super-Eddington
accreting neutron star with an inclined magnetic field axis. I will investigate the
impact of the inclination angle of the magnetic field relative to the rotation axis
on the accretion structure, luminosity and pulsations of ULXs. I will also use the
HEROIC code (Narayan, Zhu, et al., 2016) for post-processing radiative transfer, re-
computing the radiation field and spectrum, enabling us to compare the simulations
with observational data.
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