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Neutron stars

NASA/JPL-Caltech/SAO

➢ Neutron stars are the compact objects with supranuclear densities 
at the core.

➢ Serve as astrophysical laboratories to study the equation of state 
(EoS) of such dense material.

➢ Mass and radius are required to constrain the EoS.

                                      
             

➢ Neutron stars are observed to be very bright, reaching 
near-Eddington luminosities. Two best examples:

Type-I X-ray bursts: During the peak of the outburst. 

Ultra-Luminous X-ray sources: NGC 7793 P13, NGC 5907, M82 
X-2 (NuSTAR J09551+6940.8), NGC 300 ULX1 (Bachetti et al. 2014; 
Israel et al. 2016, 2017)



Radiation force

 Consider a star emitting radiation isotropically at Super-Eddington luminosity 

In Newtonian Theory, gravity and radiation force fall of as           , whereas in Theory of General Relativity, 
both have different radial dependence.

Gravity



Radiation force

 Consider a star emitting radiation at Super-Eddington luminosity 

Gravity

M

is the Eddington parameter

In Newtonian Theory, gravity and radiation force fall of as           , whereas in Theory of General Relativity, 
both have different radial dependence.

Levitating atmosphere
or

Eddington Capture Sphere (ECS) 
(Abramowicz et. al 1990, Stahl et. al 2012)



➢ Assume a static, spherically symmetric spacetime

Levitating atmospheres - Hydrostatic equilibrium

➢ Energy-momentum conservation

➢ Mass conservation

for gas

for radiation



➢ Assume a static, spherically symmetric spacetime

Levitating atmospheres - Hydrostatic equilibrium

➢ Energy-momentum conservation

➢ Mass conservation

Optically thin limit

➢ Hydrostatic equilibrium 

for gas

for radiation



Polytropic atmospheres

➢ The hydrostatic equilibrium condition 
can be analytically solved for 
polytropic atmospheres.

(Wielgus et. al 2015)



NS

Fluid variables :

Radial perturbations of the levitating atmosphere 

Linearized conservation equations, along with the equation of state gives

Assumption:

Geometrically thin atmosphere 

Radiation Drag 

A function of radiative force terms. Under geometrically 
thin limit,                           is constant
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➢ Real part of the eigenvalue problem is a Gegenbauer differential equation

➢ Imaginary part yields

which gives the damping coefficient, 

and the Gegenbauer relation gives, 



➢ Undamped frequencies of 
the ten first normal modes 
of the geometrically and 
optically thin atmospheres 
as a function of the 
atmosphere location

Undamped Oscillations   

Frequencies of the oscillations 
decrease with increasing 
Luminosity.



➢ Undamped frequencies of 
the ten first normal modes 
of the geometrically and 
optically thin atmospheres 
as a function of the 
atmosphere location

Undamped Oscillations   

Damping rate



Damped Oscillations   

A maximum in frequency 

➢ Damped frequencies of the first 
few normal modes 

Overdamped mode 



Variation of frequency maximum with stellar parameters

700 Hz

➢ Maximum is always located 
close to     , irrespective of the 
values of            and M.

➢ For a given M,            is inversely 
proportional to            . 

➢ For a given             ,            is 
again inversely proportional to 
M.

➢ Degeneracy in the           .

➢ For a given             ,  
occurs at the same radius 
irrespective of M.



All we need are the 
luminosity and the 
frequency !

Mass and radius from the 
Frequency maximum

600 Hz frequency observed at 
a luminosity

k=2



k=3

600 Hz frequency observed at 
a luminosity

Mass and radius from the 
Frequency maximum



Summary

➢ Neutron stars emitting radiation at near-Eddington luminosity harbour 
Levitating atmospheres.

➢ We investigated the radial oscillations of such atmospheres, accounting for 
the radiation drag.

➢ The frequencies of the underdamped oscillations exhibit a characteristic 
maximum, which is a function of stellar mass and radius.

➢ Based on this maximum value of frequency, and the corresponding 
luminosity,  we derive the mass and radius of the neutron star. 


