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DIM basic hypotheses

* Alpha viscosity most often assumed

* Thin disk approximation:

* Keplerian motion

» Radial gradients small as compared to vertical gradients (but
transition fronts, inner edge)

* Vertical structure decouples from radial structure

e Vertical structure

* Hydrostatic and thermal equilibrium assumed, with an effective
alpha different from the actual one

* Time-dependent terms in the vertical thermal equation are
proportional to heat dissipation in steady state, i.e. to P

=> effective q, different from actual a
* Terr = Teee2, T, 1)
v=v(X, T,r)

* If thermal equilibrium, T, =T (a, X,r) => S curves
* o different on the hot and cold branches: a = a(T,, ...)
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Additional ingredients

* Tidal torques:
* Angular momentum conservation equation
* Heating term

* Ty~ (r/a)> or exp((r-r4)/0r)
* Hot spot
* Inner disc truncation by e.g. magnetic field

* Irradiation by the primary (hot white dwarf) or self

G’VT’}Mr—Z, with C ~ 102 103,

irradiation (F;,,- = C
Dubus et al. 1999)
 Mass transfer fluctuations

e Chemical composition (He secondaries)

Reproduces reasonably well DN and SXT outbursts



Large discs

* Found in long period systems with evolved secondaries

e Symbiotic stars
e SXTs such as V 404 Cyg (P, = 6.5 d)

* No observational constraint on the effect of irradiation, in
contrast with systems with short P_,,

 The outer disc radius is not well determined if the
companion does not fill its Roche lobe (wind fed accretion)

 The disc cannot be stable unless M >
1.25 1077 M3®8% P3-"°M,, yr! (unirradiated case)

* Large outbursts are p055|ble in principle
M_._=3.610"7 P;"°M, yrt

* But in these systems the heating front might not reach the
outer disc edge

* Numerical simulations needed
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* Recurrent nova, 1., =20 yr, P, =454d,d = 2.3 kpc

¢ M]_ — 135 M@,

e M =10"8% — 107° M_yr?; but values as low as
10712 — 1071 M_yr! deduced from X-rays in
guiescence

e Suggestion (Alexander et al. 2011) that outbursts might
be DN outbursts

IccC



Lyec peak qulesc
M@yr M@) yr)

10® 10® 4,110 3.810%
1077 0.5 7 108 0.9 6.3107 3.8101?
108 0.1 4.510° 0.5 9.310% 3.810%

High M: AM > AM; g ~ 4 10~"M,, for triggering a nova
outburst;

Mpeaklarger than both the limit for stable byrning
(Mgtapie ~ 6 108 M yrt) and the limit (3 Mgigpie) for
burning hydrogen as quickly as it is accreted
Recurrence time far too short

Low M: AM small; hydrogen accumulates until a nova
eruption is triggered;

AM; 4nreached after 5—50 DN outbursts. DN outbursts
undetectable in optical but could be observed in X-rays
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Model with self-irradiation

AM (Mg) trec (YF) peak M quiesc
M@yr

1076 510 4110 3.81012
107 0.9 4107 4.2 6.3107 3.810712
10°8 0.2 1.5-410% 26-3.7 93108 3.810712

e Same conclusions as in the unirradiated case;
longer recurrence time and larger AM, thus smaller
number of DN outbursts between nova eruptions
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Conclusions for RS Oph

* The mass transfer rate in RS Ophis 1078 — 1077 Mg yrt

* The disc is unstable and DN outbursts occur every few years.
* They are undectable in optical, but could be detected in X-rays
* Account for the low quiescent rate

* RS Oph outbursts are thermonuclear outbursts that occur
during the decline of a DN outburst
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* P, =759d,d=2.0kpc

* M; = 0.65M; M, /M;~2. The secondary does not fill
its Roche lobe

* B,,q~ 10* — 10° G (optical pulsations)
* Large WD constant luminosity L, ~ 103 L

e Suggestion (Sokoloski et al. 2006) that 15t outburst is a
DN outburst and the 2" a combination outburst



Results

. DI\II outbursts are significant for high M (~ 107° Mg yrt)
only;

* Their properties in optical depend only weakly on the
assumptions made on irradiation

* Noirradiation
* Irradiation of the inner parts of the disc only
e Full disc irradiation

* Enhanced thermonuc|ear burning at the WD surface will
occur for these high M

* But such large values of M are two orders of magnitude
larger than what is expected for the secular mean

* Mass transfer fluctuations in a system in which mass
transfelr is due to the secondary wind are much more
natura
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Counts/sec.
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A better (?) behaved SXT: GS 1354-64
P., =2.54d

5.73x10*

Outburst duration:
about 200 d
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The heating front never reaches the outer

20

disc edge

M;=7M,
M, = 0.8 M,

P, =155hr
M=2510%"%gs?
a. = 0.04

a, = 0.20

fiy =51073
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* The cooling front is stuck at a radius of about 1.5 10! cm
e This is the reason for the plateau at 1017 g sL.
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(preliminary) conclusions
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Light curves with long plateau can be obtained; these are
similar to Z Cam systems, but the mechanism is very different

e See e.g. Swift J1753.5-0127 (Shaw et al. 2018), but this source has a
short orbitaldperiod; as the period is photometric only, is it the true
orbital period (actually, it is interpreted as the superhump period) ?

Eddington luminosities not simple to obtain; reduce a on the
cold branch (or increase it on the hot branch)?

e Mass loss to be included



