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Super-Eddington accretion

Macc >> ME = LE /(T] Cz) (n = efficiency ~ 0.1)

Classical limit can be exceeded by disc accretion
(*." directions of gas inflow & out-going radiation are different)

outflow K : _ ’ outflow
accreting gas \ .

>

Apparent luminosity can exceed L!




Key process 1. Outflow

(Shakura & Sunyaev 1973; Poutanen+ 2007, ...)

Significant outflow from disc surface

Radiation pressure-driven outflow inevitably occurs.

disk wind

Shakura & Sunyaev (1973)
e Critical radius = spherization radius: Fep™ (A.Acz/nLE) r

o Inside this radius: flatter temp. profile: Tocp -1/2




Key process 2. Photon trapping

Begelman (1978), Ohsuga et al. (2002)

Photon trapping within disc

Photons are trapped within luminous accretion flow.

trapped

k photons
nergy

B

« Critical radius = trapping radius: r,_ -~ (I\.Acz/LE)(H/r') P

o Inside this radius: flatter temp. profile: Tocp -1/2

©K. Ohsuga



Key questions !!
1. Why is super-Eddington accretion feasible?
In case of BH, in case of NS??

2. Is the slim disc model a good model?

Or just a “historical” model?

3. What is a key signature of super-Eddington

flow?



Why iIs super-Eddington accretion

jea3| ble? GR-R-MHD simulation by Takahashi+2017
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2. Slim disc model vs. numerical simulation



RHD simulation of super-Eddington

accretion & outflow

(Ohsuga+ 05)
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Problems in the past simulations

We wish to compare with the slim disc model

Simulations show two step evolution:
(1) free fall until r¢,, (at which F_.,=F..,)
(2) viscous accretion flow inside ry,,

> Need large ry., X Pypgp ™ (Mc?/Lg) rs
Large ry.,~> long computational time > difficult
(cf. Previously ry,, ~ 30rs)

= New simulations with r¢,, ~ 300 rg
Box size ~ 3000 rg



Summary: density contours

(density normalization py,ocMgy?) Kitaki, SM+ 2018
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The region of steady state and the outflow © T Kitaki

@utﬂow rate is negligible near BH

=> consistent with slim disc modeD
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Why is the outflow so weak? © T. Kitaki

/Outﬂow rate is proportional to mass density and velocity. \
Mous(r) = f dQ? r?p(r, ) max{v,(r,8), 0}

From streamline, outflow blows out (vr = 0.1¢) near the black hole

The mass density on the disc surface,decreases, as I decreases;
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Results of parameter fittings © T. Kitaki

,/Compare the parameter dependences of the physical quantities\
between the simulated accretion flow and the slim disc:
Dependences on Mgy & Mgy => Good agreement
Depenoiences on r => Differences in @, Yy profiles

Density and velocity profiles of the simulated flow are close to
Kthose of the CDAF (Convection Dominated Accretion Flow). Y,

our simulations slim disc (Watarai 2006)
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Convection in super—Eddington accretion  © T kitaki

/" Entropy increases toward the center (direction of the )
. gravitational force) => convectively unstable

Timescales of convective motion and radiative diffusion

\_ teonv = D /v ~ 0.54[8] < tqig = 37.H/c ~ 15[8| Y

log(p)

100

80
60

40 (4 1) 2

20

0 20 40 60 80 100
R/r



3. 3D structure of clumpy outflow from

super-Eddington accretion flow



Discovery of clumpy outflow

8.8000 s, 61.18 orbit
log p [g/cm”]

© S. Takeuchi



© H. Kobayashi
3D calculated model

e Computational domain 90°

R=60-1000rs : 6=0-90° : z=80-1000rs 7

e Grid spacing
AR=Az=4 0rs : AO=0.9°

Free boundary
1000rs :

e Initial condition of
physical quantity
Data from Takeuchi et al. 2013
with fluctuation for one wave of  ggs
+10% SIN curve in O-direction,
and 1gnore the magnetic fields

(magnetic fields do not affect
to make clumpy structure).
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3D Structure of clumpy outflow
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© H. Kobayashi



Density contours on the 2D

R-z plane
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© H. Kobayashi
Auto-Correlation Analysis
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ACF anaIyS|s (R and 0 direction)

clump Width ~30 rs
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Clumpy outflow (?) from ULXs

(Middleton+11)

Energy dependent time Covering factor (fraction of sky
variations In NGC5408 X-1  (covered by clumps):

on ~10 s v 1
~0.1 (—out ) 71 (Lo
— variability at low / (1OLE/C2) te (1000 rs)

energies is diluted by a g ... time scale:
constant soft comp.
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Key questions: Revisited

1. Why is super-Eddington accretion feasible?
= 2-D effects with photon trapping/outflow

2. Is the slim disc model a good model?
= Yes, it is |l

3. What is a key signature of super-Eddington

flow?

= clumpy outflow, producing variability &
spectral hump (see a next talk)



