Slim Disc Model and Numerical Simulations of Super-Eddington Accretion Flow

© Shun Takeuchi

© Takao Ochiai

Shin Mineshige (Kyoto U.)

K. Ohsuga (Tsukuba), T. Kawashima, Y. Asahina, H. Kobayashi, (NAOJ), H. Takahashi (Chubu), T. Ogawa, T. Kitaki (Kyoto)

Outline

- 1. Introduction: super-Eddington accretion and key questions
- 2. Slim disc model vs. numerical simulation
- 3. 3D structure of clumpy outflow from super-Eddington accretion flow

Super-Eddington accretion

$$\dot{M}_{\rm acc} >> \dot{M}_{\rm E} \equiv L_{\rm E} / (\eta c^2) \quad (\eta = \text{efficiency} \sim 0.1)$$

Classical limit can be exceeded by disc accretion (:: directions of gas inflow & out-going radiation are different)

Key process 1. Outflow

(Shakura & Sunyaev 1973; Poutanen+ 2007, ...)

Significant outflow from disc surface

Radiation pressure-driven outflow inevitably occurs.

Key process 2. Photon trapping

Begelman (1978), Ohsuga et al. (2002)

Photon trapping within disc

Photons are trapped within luminous accretion flow.

Critical radius = trapping radius: r_{trap}~ (Mc²/L_E)(H/r) r_s
 Inside this radius: flatter temp. profile: T∝r ^{-1/2}

©K. Ohsuga

Key questions !!

- 1. Why is super-Eddington accretion feasible? In case of BH, in case of NS??
- 2. Is the slim disc model a good model? Or just a "historical" model?
- 3. What is a key signature of super-Eddington flow?

Why is super-Eddington accretion feasible? GR-R-MHD simulation by Takahashi+2017

1. Introduction: super-Eddington accretion and key questions

2. Slim disc model vs. numerical simulation

3. 3D structure of clumpy outflow from super-Eddington accretion flow

RHD simulation of super-Eddingtonaccretion & outflow:(Ohsuga+ 05)

 First radiation-hydrodynamical simulations of supercritical accretion flows in quasi-steady regimes with a viscosity (a=0.1).

gas density

 $M = 10 M_{sun} \& \dot{M} \sim 350 L_{E}/c^{2} \rightarrow L \sim 3 L_{E}$

radiation energy density

Problems in the past simulations

We wish to compare with the slim disc model

Simulations show two step evolution:

- (1) free fall until r_{Kep} (at which $F_{cent}=F_{grav}$) (2) viscous accretion flow inside r_{Kep}
 - → Need large r_{Kep} ≿ r_{trap} ~ (Mc²/L_E) r_S
- Large $r_{Kep} \rightarrow long$ computational time \rightarrow difficult (cf. Previously $r_{Kep} \sim 30 r_{s}$)
 - New simulations with r_{Kep} ~ 300 r_s
 Box size ~ 3000 r_s

The region of steady state and the outflow $C^{T. Kitaki}$

Outflow rate is negligible near BH => consistent with slim disc model

Why is the outflow so weak?

Results of parameter fittings

Compare the parameter dependences of the physical quantities between the simulated accretion flow and the slim disc:

- Dependences on M_{BH} & $\dot{M}_{BH} =>$ Good agreement
- Dependences on r => Differences in ρ, v_r profiles
- Density and velocity profiles of the simulated flow are close to those of the CDAF (Convection Dominated Accretion Flow).

Convection in super-Eddington accretion © T. Kitaki

Entropy increases toward the center (direction of the

Timescales of convective motion and radiative diffusion $t_{\rm conv} = D/v \sim 0.54 [{
m s}] < t_{\rm diff} = 3\tau_{\rm e} H/c \sim 15 [{
m s}]$

Outline

- 1. Introduction: super-Eddington accretion and key questions
- 2. Slim disc model vs. numerical simulation
- 3. 3D structure of clumpy outflow from super-Eddington accretion flow

Discovery of clumpy outflow

3D calculated model

- Computational domain R=60-1000rs : θ=0-90° : z=80-1000rs
- Grid spacing
 ΔR=Δz=4.0rs : Δθ=0.9°
- Initial condition of physical quantity

Data from Takeuchi et al. 2013 with fluctuation for one wave of $\pm 10\%$ SIN curve in θ -direction, and ignore the magnetic fields (magnetic fields do not affect to make clumpy structure).

 $(\propto [1+0.1\sin(4\theta)])$

3D Structure of clumpy outflow

© H. Kobayashi

Density contours on the 2D planes

Auto-Correlation Analysis

ACF analysis (**R** and θ direction) **Radial structure** azimuthal structure C(80) C(8R) -0. 10 p/r. 160 clump width ~ 100 rs clump width ~ 30 rs separation ~ 300 rs separation = 50 - 150 rs 0 1.0 **60 rs 300 rs** 2D case 0.5 0.5 C(80) C(8R) average R=740 rs

0.0

-0.5

average

50

theta=45

150

200

100

SR/rs

0.0

-0.5

27

18

SO

36

Clumpy outflow (?) from ULXs (Middleton+11)

Energy dependent time variations in NGC5408 X-1 on ~10 s

→ variability at low energies is diluted by a constant soft comp. Covering factor (fraction of sky covered by clumps):

$$f \sim 0.1 \left(\frac{\dot{M}_{\text{out}}}{10L_{\text{E}}/c^2}\right) \tau_{\text{C}}^{-1} \left(\frac{r_0}{1000 r_{\text{s}}}\right)^{-1}$$

Basic time scale:

$$t \sim 10 \left(\frac{M_{\rm BH}}{30M_{\rm sun}}\right) \left(\frac{r_0}{1000 r_s}\right) \sec \frac{1}{2\pi r_0 / 0.3 V_{\rm K}}$$

Key questions: Revisited

- 1. Why is super-Eddington accretion feasible?
 - → 2-D effects with photon trapping/outflow
- 2. Is the slim disc model a good model?
 > Yes, it is !!
- 3. What is a key signature of super-Eddington flow?
 - Iumpy outflow, producing variability & spectral hump (see a next talk)